TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ

Bu çalışmada, rijit duvar testi sanal ortamda simule edilerek yüksek mukavemetli düşük alaşımlı çelik ön çarpışma kolu et kalınlığının aracın çarpışma performansına etkisi incelenmiş ve en uygun et kalınlığı tespit edilmiştir. Ön çarpışma kollarında HSLA (High-Strength Low-Alloy) çelik grubundaki FEE340 malzemesi kullanılmış ve altı farklı et kalınlığının aracın çarpışma performansına etkileri karşılaştırılmıştır. Simülasyonlarda çarpışma kolu, çarpışma kutusu ve ön tampon (destek) traversinden oluşan yarım araç modeli kullanılmıştır. Farklı kalınlığa sahip ön çarpışma kollarının çarpışma analizleri Abaqus sonlu elemanlar yazılımı ile gerçekleştirilmiştir. Simülasyonlardan, toplam deplasman, çarpışma kuvveti verimliliği (CFE), yolcu kabinine iletilen kuvvet miktarı ve her bir çarpışma elemanı tarafından sönümlenen enerji miktarı sonuçları elde edilmiştir. Simülasyonda kullanılan taşıt modeli için, yolcu kabinine iletilen kuvvet, ivme ve deplasman miktarları değerlendirildiğinde HSLA çelik ön çarpışma kolu için en uygun et kalınlığının 2 mm olduğu görülmüştür. 

Determinatıon of Best Wall Thickness for High Strenght Low Alloy (HSLA) Steel Front Collision Railsin Vehicles

In this study, the rigid wall test was simulated in a virtual environment and the effect of high strength low alloy steel front collision rail wall thickness on the crash performance of a vehicle was investigated and the best wall thickness was determined for the front collision rails. The FEE340 material in the HSLA (High-Strength Low-Alloy) steel group was used in the front collision rails and the effects of the six different material wall thicknesses used in the front collision rails were compared with regard to the crash performance of the vehicle. The crash analyses of the frontal collision rails with various thicknesses were performed by the Abaqus finite element software. Total displacement, crush force efficiency (CFE), the amount of force delivered to the passenger compartment and the amount of energy damped by each collision member results were acquired from the simulations. For the vehicle model used in the simulations, when the amounts of force delivered to the passenger life cage, acceleration and displacement were evaluated, it was seen that the best wall thickness for the HSLA steel front collision rail was 2 mm.

___

  • 1. Deb, A., Gunti, R. S., Chou, C., Dutta, U. (2015). Use of truncated finite element modeling for efficient design optimization of an automotive front end structure (No. 2015-01-0496). SAE Technical Paper.
  • 2. Du, Q. (2016). Uncertainty optimization of thin-walled beam crashworthiness based on approximate model with step encryption technology. SAE International Journal of Materials and Manufacturing, 9(3), 622-630.
  • 3. Ensarioglu C., Gulcimen Cakan B., Reis M., Koluk H., Celik H., Uguz A., Cakir M. C. (2018). Reinforcement of a Thermoplastic Crash-Box with Aluminum Foam and Tie Beams. Academic Conference on Engineering, IT and Artificial Intelligence (AC-EITAI 2018), Prag.
  • 4. Eren, I., Gür, Y., Aksoy, Z. (2009). Finite element analysis of collapse of front side rails with new types of crush initiators. International journal of automotive technology, 10(4), 451-457.
  • 5. George Mason University, (2016). 2010 Toyota Yaris Finite Element Model Validation Detail Mesh, Center for Collosion Safety and Analysis. (Doi: 10.13021/G8CC7G)
  • 6. Ghannam, M. Y., Niesluchowski, M., Culkeen, P. M. (2002). Analysis of a Frontal Rail Structure in a Frontal Collision (No. 2002-01-0688). SAE Technical Paper.
  • 7. Gulcimen Cakan B., Reis M., Ensarioglu C., Koluk H., Yeni H., Uguz A., Cakir M. C. (2018). Termoplastik çarpışma kutularında alüminyum köpük takviyesinin çarpışma karakteristiğine etkisi. 18th International Conference on Machine Design and Production, 3-6 July, Eskişehir.
  • 8. Hussain, N. N., Regalla, S. P., Rao, Y. V. D. (2017). Low velocity Impact Characterization of Glass Fiber Reinforced Plastics for Application of Crash Box. Materials Today: Proceedings, 4(2), 3252-3262.
  • 9. Kim, H. S. (2001). Analysis of crash response of aluminium foam-filled front side rail of a passenger car. International journal of crashworthiness, 6(2), 189-208.
  • 10. Li, Q. F., Liu, Y. J., Wang, H. D., Yan, S. Y. (2009). Finite element analysis and shape optimization of automotive crash-box subjected to low velocity impact. In Measuring Technology and Mechatronics Automation, 2009. ICMTMA'09. International Conference on (Vol. 2, pp. 791-794). IEEE.
  • 11. Liu, X. T., Liu, C. H., Shi, S. L., Zhao, L. H., Huang, H. (2010). The analysis of front rail crash on mini-bus chassis. In Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on (Vol. 2, pp. 14-16). IEEE.
  • 12. Öztürk, İ., Kaya, N. (2008). Otomobil ön tampon çarpışma analizi ve optimizasyonu. Uludağ University Journal of The Faculty of Engineering, 13(1).
  • 13. Peroni, L., Avalle, M., Belingardi, G. (2009). Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques. International journal of impact engineering, 36(3), 498-511.
  • 14. Rao Lakshmana C., Narayanamurthy V., Simha K. R. Y. (2016). Applied Impact Mechanics . Ane Books Pvt. Ltd. (ISBN : 978-11-1924-180-5).
  • 15. Saputra, H., & Rochardjo, H. S. (2017). The prediction of energy-absorption on the car crush box. In Science and Technology-Computer (ICST), 2017 3rd International Conference on (pp. 51-56). IEEE.
  • 16. Tahan, F. J., Park, C. K., Morgan, R. M., Cui, C., Brar, B., Shanks, K., Kan, C. D. (2013). The Effect of Reduced Mass on Frontal Crashworthiness. In The pro-ceedings of the IRCOBI 2013 Conference.
  • 17. Wang, T., Wang, L., Wang, C., Zou, X. (2018). Crashworthiness analysis and multi-objective optimization of a commercial vehicle frame: A mixed meta-modeling-based method. Advances in Mechanical Engineering, 10(5), 1687814018778480.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

GALLİK ASİDİN FOTOKATALİTİK GİDERİMİ: DÜŞÜK MOLEKÜLER AĞIRLIKLI BİLEŞENLER KULLANILARAK DOĞAL ORGANİK MADDE MODELLEMESİ

Ceyda Senem UYGUNER-DEMİREL

YAPILARDA YAYGIN KULLANILAN ISI YALITIM MALZEMELERİNİN PERFORMANS ÖZELLİKLERİNİN DUVAR KESİTLERİ ÜZERİNDE DEĞERLENDİRİLMESİ

Nazife ÖZER, Seden ACUN ÖZGÜNLER

Bir Fotovoltaik/Rüzgar Türbini Hibrit Güç Üretim Santralinin Dinamik Simulasyonu: Bursa İli Örneği

Muhsin KILIÇ, Ayşe Fidan ALTUN

Kuru Tip Transformatörlerin Dış Ortamlarda Kullanılabilmesi İçin Deneysel Ve Simülasyon Ile Termal Analizine Yeni Yaklaşım

Murat TÖREN, Mehmet Mesut ÇELEBİ

ÜÇÜNCÜ DERECEDEN YENİ BİR QUADRATURE OSİLATÖR TASARIMI

İhsan KARACAN, Ahmet GÖKÇEN

GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ

Hüseyin AVCI, Mustafa Erdem ÜREYEN, Ali Murat KILIÇ, Adem Erdal SAĞLAM, Ali Demir YONGUÇ

Homojen Olmayan Düzlem Dalgaların Mükemmel Elektrik İletken (MEİ) Yarım Düzlem Tarafından Saçınımının Asimptotik Olarak Hesaplanması

Mustafa Cemil KARA

ÇELİK TEL DONATILI BETONLARIN MEKANİK ÖZELLİKLERİNİN GÖRÜNTÜ ANALİZLERİ İLE TAHMİNİ

Eyüp TAŞKAN, Yunus GÜNDÜZ, Yuşa ŞAHİN

INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES

Erhan Kenan ÇEVEN, Gizem KARAKAN GÜNAYDIN

DESIGN AND REALISATION OF A YARN TENSION SENSOR USING STRAIN GAUGE TYPE LOAD CELLS

Recep Hayri EREN, Hüseyin Nizam MUTLU, öZGE çelik