ÖRTME FAKTÖRÜ VE GÖZENEKLİLİK PARAMETRELERİNİN DOKUMA KUMAŞLARIN SES YUTUCULUK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ
Bu çalışmada farklı atkı sıklığı ve iplik numaralarından oluşan dokuma kumaşların örtme faktörü ve gözeneklilik parametreleri ile ses yutuculuk davranışları arasındaki ilişki incelenmiştir. Bu amaçla üç farklı atkı sıklığı ve dört farklı numarada atkı ipliği kullanılarak dokuma kumaşlar üretilmiştir. Kumaşların gramaj, kalınlık, hava geçirgenliği, gözenek oranı ve ses yutuculuk katsayıları ölçülmüştür. Kalın iplik kullanımı ve sıklık artışı kumaştaki gözenek oranını ve hava geçirgenlik değerlerini düşürmüş, bunun yanında kumaşın ses yutuculuk katsayısı değerlerinde artışa sebep olmuştur. Kumaş sıklığı ve iplik numarası parametrelerini tek bir değişkene indirgemesi açısından faydalı olabilecek örtme faktörü değerleri hesaplanmıştır. Örtme faktörü yüksek kumaşların daha küçük gözeneklere sahip olduğu ve hava geçirgenliklerinin daha düşük olduğu gösterilmiştir. Artan örtme faktörü ile birlikte dokuma kumaşların daha iyi ses yutuculuk performansı gösterdiği tespit edilmiştir.
An Investigation of the Effects of Cover Factor and Porosity Parameters on the Sound Absorption Behavior of Woven Fabrics
In this study, the relationship between the cover factor and porosity parameters of woven fabrics consisting of different weft density and yarn counts and the sound absorption behavior were investigated. For this purpose, woven fabrics were produced using three different weft density and four different weft thread counts. Mass per unit area, thickness, air permeability, pore ratio and sound absorption coefficients of the fabrics were measured. The use of thick yarns and the increase in weft density decreased the fabric pore ratio and air permeability values, besides, they caused an increase in the sound absorption coefficient values of the fabric. Cover factor values that can be useful in reducing the fabric density and yarn count parameters to a single variable have been calculated. It has been shown that fabrics with high cover factor have smaller pores and lower air permeability. It has been determined that woven fabrics show better sound absorption performance with increasing cover factor.
___
- 1. Barburski, M., Blaszczak, J. R., ve Pawliczak, Z. (2019) Influence of designs of weaves on acoustic attenuation of fabrics. Journal of Industrial Textiles, 49(1), 33–45. https://doi.org/10.1177/1528083718769945
- 2. Çevre ve Şehircilik Bakanlığı. (2012) Gürültünün insan sağlığı üzerine etkileri. Erişim Tarihi: 23.08.2012, http://gurultu.cevreorman.gov.tr/gurultu/AnaSayfa/gurultu/sagliketkileri.aspx?sflang=tr
- 3. Coates, M., ve Kierzkowski, M. (2002) Acoustic textiles - Lighter, thinner and more sound-absorbent. Technical Textiles International, 11(7), 15–18.
- 4. Cox, T. J., ve D’Antonio, P. (2005) Acoustic Absorbers And Diffusers: Theory, Design and Application. Spon Press, Taylor & Francis Group, New York.
- 5. Demirkale, S. Y. (2007) Çevre ve Yapı Akustiği Mimarlar ve Mühendisler İçin El Kitabı, Birsen Yayınevi, İstanbul.
- 6. Genis, A. V, Kostyleva, E. Y., ve Kostylev, V. A. (1990) Sound-absorbing properties of fibrous materials prepared by the aerodynamic method. Fibre Chemistry, 21(5), 389–392. https://doi.org/10.1007/BF00557035
- 7. Işıkel, K. (2006) Endüstri tesislerinde gürültü kontrolü ve uygulamaları. Tesisat Mühendisligi Dergisi, 91, 69–73.
- 8. Lee, Y. E., ve Joo, C. W. (2004) Sound absorption properties of thermally bonded nonwovens based on composing fibers and production parameters. Journal of Applied Polymer Science, 92(4), 2295–2302. https://doi.org/10.1002/app.20143
- 9. Lee, Y., ve Joo, C. (2003) Sound absorption properties of recycled polyester fibrous assembly absorbers. Autex Research Journal, 3(2), 78–84.
- 10. Morton, W. E., ve Hearle, J. W. S. (2008) Physical Properties of Textile Fibres, Woodhead Publishing Limited, Cambridge. https://doi.org/10.1533/9781845694425
- 11. Na, Y., Lancaster, J., Casali, J., ve Cho, G. (2007) Sound absorption coefficients of micro-fiber fabrics by reverberation room method. Textile Research Journal, 77(5), 330–335. https://doi.org/10.1177/0040517507078743
- 12. Peirce, F. T. (1937) 5—The geometry of cloth structure. Journal of the Textile Institute Transactions, 28(3), T45–T96. https://doi.org/10.1080/19447023708658809
- 13. Rettinger, M. (1968) Acoustics: Room Design and Noise Control, Chemical Publishing Co. Inc., New York.
- 14. Segura-Alcaraz, P., Segura-Alcaraz, J., Montava, I., ve Bonet-Aracil, M. (2019) The effect of the combination of multiple woven fabric and nonwoven on acoustic absorption. Journal of Industrial Textiles. https://doi.org/10.1177/1528083719858771
- 15. Soltani, P., ve Zarrebini, M. (2013) Acoustic performance of woven fabrics in relation to structural parameters and air permeability. Journal of the Textile Institute, 104(9), 1011–1016. https://doi.org/10.1080/00405000.2013.771427
- 16. Soltani, P., ve Zerrebini, M. (2012) The analysis of acoustical characteristics and sound absorption coefficient of woven fabrics. Textile Research Journal, 82(9), 875–882. https://doi.org/10.1177/0040517511402121
- 17. Suvari, F., ve Dulek, Y. (2019) Investigating the effect of raising on the sound absorption behavior of polyester woven fabrics. Textile Research Journal, 89(23–24), 5119–5129. https://doi.org/10.1177/0040517519848161
- 18. Suvari, F., Ulcay, Y., ve Pourdeyhimi, B. (2016) Sound absorption analysis of thermally bonded high-loft nonwovens. Textile Research Journal, 86(8), 837–847. https://doi.org/10.1177/0040517515590412
- 19. Suvari, F., Ulcay, Y., ve Pourdeyhimi, B. (2019) Influence of sea polymer removal on sound absorption behavior of islands-in-the-sea spunbonded nonwovens. Textile Research Journal, 89(12), 2444–2455. https://doi.org/10.1177/0040517518797332
- 20. Teli, M. D., Pal, A., ve Roy, D. (2007) Efficacy of nonwoven materials as sound insulator. Indian Journal of Fibre and Textile Research, 32(2), 202–206.