HAVA JETİ ÇARPMALI KURUTMA İÇİN FARKLI DAİRESEL NEMLİ NESNE GEOMETRİLERİNİN ISI VE KÜTLE TRANSFERİ ÜZERİNDEKİ ETKİSİNİN ARAŞTIRILMASI
Kurutma, gıdadan suyun uzaklaştırılarak uzun süreli depolama için en çok kullanılan yöntemlerden biridir. Kurutma ile gıdadaki su miktarı ve mikrobiyal aktivitenin önemli ölçüde azalması nedeniyle depolama boyunca meydana gelen fiziksel ve kimyasal değişimler en az seviyede olmaktadır. Bu çalışmada, iki farklı yeni nemli nesne geometrisi olan tam ve ters yarı dairesel nesnenin hava jeti ile kurutulmasının ısı ve kütle transferi artışı üzerindeki etkisi sayısal olarak incelenmiştir. Jet kurutması, nemli nesneden sabit bir jet uzaklığında (H) konumlandırılmış olup laminer ve iki boyutludur. İncelenen tüm durumlar için nemli nesnenin çapı, nemli nesneden olan jet uzaklığı ve jet giriş yüksekliği sabit olarak alınmıştır. Nesnelerin etrafındaki akım çizgileri ve eş sıcaklık eğrileri farklı jet Reynolds sayıları için elde edilmiştir. Korunum denklemlerini çözmek için sonlu hacim yöntemi olan ANSYS Fluent 17,0 bilgisayar programı kullanılmıştır. Hesaplamalar, Re = 100, 200, 300 olarak farklı Reynolds sayıları için yapılmıştır. Çalışmanın, literatürde var olan deneysel ve sayısal çalışmayla iyi bir uyum içerisinde olduğu bulunmuştur. Sonuçlar, tam dairesel nemli nesne geometrisinin ters yarı dairesel nemli nesne geometrisinden daha iyi ısı ve kütle transfer performansına sahip olduğunu göstermiştir. Ayrıca, Reynolds sayısının artışının ısı ve kütle transferi üzerinde olumlu bir etkiye sahip olduğu görülmüştür. Yerel olarak, jet kurutmanın nesnelerin ön taraflarındaki durma noktasına yakın daha etkili oldukları bulunmuştur.
Research of the Effect of Different Circular Moist Object Geometries for Air Jet Impingement Drying on Heat and Mass Transfer
Drying is one of the most used methods for long-term storage by removing water from food. The physical and chemical changes occurring during storage are minimal due to the reduction of considerable amount of water and microbial activity of the food. In the present study, the effect of the two different new moist object geometries with whole and reverse semi-circular on the heat and mass transfer enhancement of drying with air jet was numerically examined. The drying jet was a laminar and 2D jet stationed at a constant jet distance (H) from the moist object. The diameter of the moist object, jet distance from the moist object and jet initial height were fixed for all cases. Streamlines and isotherms were acquired around the objects for different jet Reynolds numbers. A finite volume method was used to solve the governing equations by using ANSYS Fluent 17.0 software program. Calculations were carried out for different Reynolds numbers, namely, Re=100, 200 and 300. It was found good agreement with experimental and numerical data available in the literature. The results showed that the geometry of whole circular moist object had better performance of heat and mass transfer than that of the reverse semi-circular moist object geometry. In addition, increasing Reynolds number showed a positive effect on heat and mass transfer. Locally, jet drying was found to be most effective near the stagnation point on the leading side of the objects.
___
- Alnak, D.E., Varol, Y., Oztop, H.F., Al-Salem, K. (2012). Simulation of jet drying of a moist cylinder at low reynolds number, Drying Technology, 30, 631-640. doi.org/10.1080/07373937.2012.654875
- Alnak, D.E., Karabulut, K. (2018). Analysis of heat and mass transfer of the different moist objects geometries with air slot jet impinging for forced convection drying, Thermal Science, 22(6B), 2943-2953. doi.org/10.2298/TSCI160721151A
- Chan, T.L, Leung, C.W., Jambunathan, K., Frost, S.A., Zhou, Y., Liu, M.H. (2002). Heat transfer characteristics of a slot jet impinging on a semi-circular convex surface, International Journal of Heat and Mass Transfer, 45(5), 993-1006. doi.org/10.1016/S0017-9310(01)00217-4
- Chan, T.L., Zhou, Y., Liu, M., Leung, C. (2003). Mean flow and turbulence measurements of the impingement wall jet on a semi-circular convex surface, Experiments in Fluids, 34(1), 140-149. doi.org/10.1007/s00348-002-0546-0
- Di Marco, P., Frigo, S., Gabbrielli, R., Pecchia, S. (2016). Mathematical modelling and energy performance assessment of air impingement drying system for the production of tissue paper, Energy, 114, 201-213. doi.org/10.1016/j.energy.2016.08.011
- Eren, H., Yeşilata, B., Celik, N. (2007). Nonlinear flow and heat transfer dynamics of impinging jets onto slightly-curved surfaces, Applied Thermal Engineering, 27(14-15), 2600-2608. doi.org/10.1016/j.applthermaleng.2007.01.022
- FLUENT User's Guide (2003) Fluent Inc., Lebanon, NH.
- Frost, S.A., Jambunathan, K., Whitney, C.F., Ball, S.J. (1997). Heat transfer from a flat plate to a turbulent axisymmetric ımpinging jet, Proceeding of the Institution of Mechanical Engineers, Part C, 211(2), 167-172. doi.org/10.1243/0954406971521746
- Gori, F., Tedesco, P.V. (2007). Cooling of two smooth cylinders in row by a slot jet of air with low turbulence, Applied Thermal Engineering, 27(14-15), 2415-2425. doi.org/10.1016/j.applthermaleng.2007.03.006
- Hosain, Md. L., Fdhila R.B., Daneryd A. (2016). Heat transfer by liquid jets impinging on a hot flat surface, Applied Energy, 164, 934-943. doi.org/10.1016/j.apenergy.2015.08.038
- Huang, D., Li, W.F., Shao, H.J., Gao, A.N., Yang, X.B. (2017). Colour, texture, microstructure and nutrient retention of kiwifruit slices subjected to combined air-impingement jet drying and freeze drying, International Journal of Food Engineering, 13(7). doi: 10.1515/ijfe-2016-0344. doi.org/10.1515/ijfe-2016-0344
- Hussain, M.M., Dincer, I. (2003). Two-dimensional heat and moisture transfer analysis of a cylindrical moist object subjected to drying: a finite-difference approach, International Journal of Heat and Mass Transfer, 46(21), 4033-4039. doi.org/10.1016/S0017-9310(03)00229-1
- Kadem, S., Younsi, R., Lachemet, A. (2016). Computational analysis of heat and mass transfer during microwave drying of timber, Thermal Science, 20(5), 1447-1455. doi.org/10.2298/TSCI140109055K
- Kaya, A., Aydın, O., Dincer, I. (2006).Numerical modeling of heat and mass transfer during forced convection drying of rectangular moist objects, International Journal of Heat and Mass Transfer, 49(17-18), 3094-3103. doi.org/10.1016/j.ijheatmasstransfer.2006.01.043
- Kaya, A., Aydın, O., Dincer, I. (2008). Experimental and numerical ınvestigation of heat and mass transfer during drying of hayward kiwi fruits (actinidia deliciosa planch), Journal of Food Engineering, 88(3), 323-330. doi.org/10.1016/j.jfoodeng.2008.02.017
- Lee, H.G., Yoon H.S., Ha, M.Y. (2008). A Numerical investigation on the fluid flow and heat transfer in the confined impinging slot jet in the low reynolds number region for different channel heights, International Journal of Heat and Mass Transfer, 51(15-16), 4055-4068. doi.org/10.1016/j.ijheatmasstransfer.2008.01.015
- Martin, H. (1977). Heat and mass transfer between impinging gas jets and solid surfaces, Advances in Heat Transfer, 13, 1-60. doi.org/10.1016/S0065-2717(08)70221-1
- McDaniel, C.S., Webb, B.W. (2000). Slot jet impingement heat transfer from circular cylinders, International Journal of Heat and Mass Transfer, 43(11), 1975-1985. doi.org/10.1016/S0017-9310(99)00267-7
- Olsson, E.E.M., Ahrne, L.M., Tragardh, A.C. (2004). Heat transfer from a slot air jet impinging on a circular cylinder, Journal of Food Engineering, 63, 393-401. doi.org/10.1016/j.jfoodeng.2003.08.009
- Olsson, E.E.M., Ahrne, L.M., Tragardh, A.C. (2005). Flow and heat transfer from multiple slot air jets impinging on circular cylinders, Journal of Food Engineering, 67(3), 273-280. doi.org/10.1016/j.jfoodeng.2004.04.030
- Oztop, H.F., Akpinar, E.K. (2008). Numerical and experimental analysis of moisture transfer for convective drying of some products, International Communications in Heat and Mass Transfer, 35(2), 169-177. doi.org/10.1016/j.icheatmasstransfer.2007.06.005
- Robinson, A., Schnitzler, E. (2007). An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer, Experimental Thermal Fluid Science, 32(1), 1-13. doi.org/10.1016/j.expthermflusci.2006.12.006
- Rahman, M.M., Hernandez, C.F., Lallave, J.C. (2010). Free liquid jet impingement from a slot nozzle to a curved plate, Numerical Heat Transfer Part A, 57(11), doi.org/799-821. 10.1080/10407781003800706
- Tarek, J.J., Ray, M.B. (2010). Application of computational fluid dynamics for simulation of drying processes: a review, Drying Technology, 28(2), 120-154. doi.org/10.1080/07373930903517458
- Teamah, M.A., Khairat, M.M. (2015). Heat transfer due to impinging double free circular jets, Alexandria Engineering Journal, 54(3), 281-293. doi.org/10.1016/j.aej.2015.05.010
- Tawfek, A.A. (2002). Heat transfer studies of the oblique ımpingement of round jets upon a curved surface, Heat and Mass Transfer, 38, 467-475. doi.org/10.1007/s002310100221
- Varol, Y., Alnak, D.E., Oztop, H.F., Al-Salem, K. (2012). Numerical analysis of heat transfer due to slot jets impingement onto two cylinders with different diameters, International Communications in Heat and Mass Transfer, 39(5), 726-735. doi.org/10.1016/j.icheatmasstransfer.2012.03.006
- Younsi, R., Souhila, K., Azziz, L., Duygu, K. (2015). Transient analysis of heat and mass transfer during heat treatment of wood ıncluding pressure equation, Thermal Science, 19(2), 693-702. doi.org/10.2298/TSCI120309113Y