A DISCOVERY-BASED CASE STUDY TO TEACH THE CONCEPTS OF COMPUTATIONAL SIMULATION AND MEASUREMENT UNCERTAINTY IN HEAT TRANSFER

The present study was used to teach undergraduate students the concepts of computational simulation and measurement uncertainty via discoverybased learning. The study included experimental-theoretical-numerical examination of heat conduction along a cylindrical rod. Because it is a well-known fact that dealing with systems having complex theoretical background distracts students‟ attention, an easy to be comprehended experimental system had intentionally chosen to allow the students mainly focus on the computational simulations and measurement uncertainty. Students were requested to compare the results obtained at each step and to figure out the possible causes of discrepancies among the results if there was any. The steps were repeated several times until the students satisfied with the results.

Isı Transferinde Bilgisayar Destekli Simülasyon ve Ölçüm BelirsizliğiMefhumlarınınKeşifTabanlı Örnek Vaka Aracılığı ile Öğretilmesi

Bu makalede lisans öğrencilerine bilgisayar destekli simülasyon ve ölçüm belirsizliği kavramlarını proje tabanlı öğrenme usulü ile öğretebilmek için kullanılan bir çalışmaanlatılmıştır. Çalışma silindirik bir çubuk üzerindeki iletimsel ısı transferinin deneysel, teorik, numerik incelenmesini içermektedir. Öğrencilerin karmaşık teorik altyapıya sahip sistemlerle ilgilenmelerinin dikkatlerini dağıtacağı iyi bilinen bir gerçek olduğu için teorik altyapısı rahatlıkla anlaşılabilecek deneysel bir sistem kasıtlı olarak seçilmiştir ki bu sayede öğrencilerin dikkatlerinin bilgisayar destekli simülasyonlar ve ölçüm belirsizliği konuları üzerine yoğunlaşmaları hedeflenmiştir. Öğrencilerden her bir adımda elde ettikleri sonuçları bir diğeri ile karşılaştırmaları istenmiş ve varsa birbirleri arasındaki sapmaların muhtemel sebeplerini ortaya çıkarmaları beklenmiştir. Her bir adımın öğrenciler sonuçlardan tatmin oluncaya kadar tekrarlanması sağlanmıştır.

___

1. Kassim, H. O. and Cadbury, R. G. (1996) The place of the computer in chemical engineering education, Computers & Chemical Engineering, 20(S2), S1341-S1346. doi: 10.1016/0098-1354(96)00230-X

2. NSF Report (2006) Simulation-based engineering sciences, Blue Ribbon Panel.

3. Sert, C. And Nakiboglu, G. (2007) Use of computational fluid dynamics (CFD) in teaching fluid mechanics, ASEE 2007 Annual Conference & Exposition, Honolulu, Hawaii, 12.1527.1 - 12.1527.13.

4. Dahm, K. and Hesketh, R. (2008) Two experiments for the introductory chemical reaction engineering course, Education for Chemical Engineers, 3(1), e1-e5. doi: 10.1016/j.ece.2007.07.001

5. Stamou, A. I. and Rutschmann, P. (2011) Teaching simple water quality models, Education for Chemical Engineers, 6(4), e132-e141. doi: 10.1016/j.ece.2011.08.005

6. Zamora, B., Kaiser, A. S. And Vicente, P. G. (2010) Improvement in learning on fluid mechanics and heat transfer courses using computational fluid dynamics, International Journal of Mechanical Engineering Education, 38(2), 147-166. doi: 10.7227/IJMEE.38.2.6

7. Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S. And Kim, Y. R. (2013) Modeling in engineering: the role of representational fluency in students‟ conceptual understanding, J. Of Eng. Edu., 102(1), 141-178. doi: 10.1002/jee.20004

8. Çengel, Y. A. and Ghajar, A. J. (2015) Heat and Mass Transfer: Fundamentals & Applications, 5th Ed. McGraw-Hill, New York.

9. Roache, P. J. (1997) Quantification of uncertainty in computational fluid dynamics, Annual Review of Fluid Mechanics, 29, 123-160. doi: 10.1146/annurev.fluid.29.1.123

10. Vazquez-Arenas, J and Pritzker, M. (2010) How to relate experiments and theory for electrochemistry? Linear sweep voltammetry for the reduction of Fe(CN)63−, Education for Chemical Engineers, 5, e78-e86. doi: 10.1016/j.ece.2010.08.001

11. Magana, A. J. and Coutinho, G. S. (2017) Modeling and simulation practices for a computational thinking-enabled engineering workforce, Computer Applications in Engineering Education, 25, 62-78. doi: 10.1002/cae.21779

12. Magana, A. J., Falk, M. L., Vieira, C., Reese Jr., M. J., Alabi, O. And Patinet, S. (2017) Affordances and challenges of computational tools for supporting modeling and simulation practices, Computer Applications in Engineering Education, 25, 352-375. doi: 10.1002/cae.21804

13. Zhou, X.-L. and Wang, J.-H. (2016) Interactive computer for teaching biot poroelasticity modeling in civil engineering, Computer Applications in Engineering Education, 24, 5-15. doi: 10.1002/cae.21662

14. Guisasola, A., Baeza, J. A., Carrera, J., Sin, G., Vanrolleghem, P. A. and Lafuente, J. (2006) The influence of experimental data quality and quantity on parameter estimation accuracy andrews inhibition model as a case study, Education for Chemical Engineers, 1, 139-145. doi: 10.1205/ece06016

15. Chimeno, M. F., Gonzalez, M. A. G. and Castro, J. R. (2005) Teaching measurement uncertainty to undergraduate electronic instrumentation students, International Journal of Engineering Education, 21(3), 525-533.

16. Jalkio, J. A. (2011) Measurement uncertainty in undergraduate physics student misconceptions and points of difficulty, 2011 ASEE Annual Conference & Exposition, Vancouver, BC, Canada, 22.1048.1-22.1048.7

17. Batstone, D. J. (2013) Teaching uncertainty propagation as a corecomponent in process engineering statistics, Education for Chemical Engineers, 8, e132-e139. doi: 10.1016/j.ece.2013.10.003

18. Finlayson, B. A. (2007) Use of COMSOL Multiphysics in undergraduate research projects to solve real-life problems, the AIChE 2007 Annual Meeting, Salt Lake City, UT, USA, 1-16.

19. Arslan, R. (2009) Activities of life-long learning and continuing engineering education in Uludağ University, Uludağ University Journal of the Faculty of Engineering, 14(1), 77-86. doi: 10.17482/uujfe.45309

20. Hillard, J., Branch, K. And Butterfield, A. (2015) Teaching fluid dynamics with the ball-in-tube device, International Journal of Mechanical Engineering Education, 43(1), 15-22. doi: 10.1177/0306419015573907

21. Chen, W., Shah, U. And Brechtelsbauer, C. (2016) The discovery laboratory – A student-centred experiential learning practical: Part I – Overview, Education for Chemical Engineers, 17:44-53. doi: 10.1016/j.ece.2016.07.005

22. Gvirtzman, Z. and Garfunkel, Z. (1996) Numerical solutions for the one-dimensional heat-conduction equation using a spreadsheet, Computers & Geosciences, 22(10), 1147-1158. doi: 10.1016/s0098-3004(96)00052-0

23. Abu-Mulaweh, H. I. (2005) Integration of a fin experiment into the undergraduate heat transfer laboratory, International Journal of Mechanical Engineering Education, 33(1), 83-92. doi: 10.7227/ijmee.33.1.9

24. Abu-Mulaweh, H. I. and Mueller, Jr, D. W. (2006) Correlation equation for heat transfer coefficients for circular pin fins, International Journal of Mechanical Engineering Education, 34(3), 211-219. doi: 10.7227/ijmee.34.3.3

25. Stammitti, A. (2013) Spreadsheets for assisting Transport Phenomena Laboratory experiences, Education for Chemical Engineers, 8, e58-e71. doi: 10.1016/j.ece.2013.02.005

26. Datta, A. K., Rakesh, V. and Way, D. G. (2013) Simulation as an integrator in an undergraduate biological engineering curriculum, Comput. Appl. Eng. Educ., 21: 717-727. doi:10.1002/cae.20519

27. Cakmak, M. E. (2018a) Theoretical and numerical examination of temperature distribution along a cylindrical brass rod with constant cross sectional area and insulated tip using EXCEL and COMSOL, at Research Gate. doi: 10.13140/RG.2.2.30157.13286

28. Cakmak, M. E. (2018b) Constructing 2D mesh systems in COMSOL, at Research Gate. doi: 10.13140/RG.2.2.24216.55047

29. Moffat, R. J. (1988) Describing the uncertainties in experimental results, Experimental Thermal and Fluid Science, 1, 3-17. doi: 10.1016/0894-1777(88)90043-x

30. Holman, J. P. (2012) Experimental Methods for Engineers, McGraw-Hill, New York.

31. Cakmak, M. E. (2018c) Uncertainty propagation in the experimental-theoretical examination of temperature distribution along a brass rod with adiabatic tip condition, at Research Gate. doi: 10.13140/RG.2.2.25731.81441

32. Churchill, S. W. and Chu, H. H. S. (1975) Correlating equations for laminar and turbulent free convection from a horizontal cylinder, Int. J. Heat Mass Transfer, 18, 1049–1053. doi: 10.1016/0017-9310(75)90222-7

33. Bergman, T. L., Lavine, A. S., Incropera, F. P. and Dewitt D. P. (2011) Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Jefferson City.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: 3
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ

Fahri Berk BİLBAY, Betül GÜLÇİMEN ÇAKAN, Cihat ENSARİOĞLU, Mustafa Cemal ÇAKIR

FREN HORTUMLARININ SERVİS ŞARTLARI ALTINDAKİ HAREKETLERİNİN ROBOTİK SİSTEM İLE CAD ORTAMINA AKTARILMASI

Mustafa Emre ÇAKIR, Cengiz DENİZ

Routh-Hurwitz Kriteri Tabanlı Sistem Kararlılık Yazılım Aracı

Fahri VATANSEVER, Metin HATUN

TASARIM PARAMETRELERİNİN PARABOLİK OLUK TİPİ BİR GÜNEŞ KOLLEKTÖRÜNÜN PERFORMANSINA ETKİSİ

Ahmet faruk ÇAĞLAR, İbrahim Barış TALAY

BİR ENDÜSTRİYEL ROBOTUN KAFESSİZ ÇALIŞMASINI SAĞLAYACAK GÖRÜNTÜ TABANLI GÜVENLİK SİSTEMİNİN GELİŞTİRİLMESİ

Furkan DUMAN, Ekrem DÜVEN

METAL KOMPOZİT ŞÖNİL İPLİKLERDEN ÜRETİLMİŞ ÖRME KUMAŞLARIN ELEKTRİKSEL, ANTİBAKTERİYEL VE PERFORMANS ÖZELLİKLERİNİN ARAŞTIRILMASI

İlkan ÖZKAN, İlhami İLHAN

YAPILARDA YAYGIN KULLANILAN ISI YALITIM MALZEMELERİNİN PERFORMANS ÖZELLİKLERİNİN DUVAR KESİTLERİ ÜZERİNDE DEĞERLENDİRİLMESİ

Nazife ÖZER, Seden ACUN ÖZGÜNLER

51CrV4 Yay Çeliğinde Isıl İşlemve Kesit Geometrisinin Çarpışma Dayanıklılığı Üzerine Etkisi

Çiğdem DİNDAR, Hüseyin BEYTÜT, Selçuk KARAGÖZ

S.cerevisiae ile REMOZAL SARI (RR) GİDERİMİNE YAPAY SİNİR AĞI (YSA) YAKLAŞIMI

Fatma ERDEM

1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ

Fikret YILDIZ