On α-skew McCoy modules

On α-skew McCoy modules

Let α be a ring endomorphism. Extending the notions of McCoy modules and α-skew McCoy rings, we introduce the notion of α-skew McCoy modules, which can also be regarded as a generalization of α-skew Armendariz modules. A number of illustrative examples are given. Various properties of these modules are developed, and equivalent conditions for α-skew McCoy modules are established. Furthermore, we study the relationship between a module and its polynomial module.

___

  • [1] Annin, S.: Associated primes over skew polynomial rings. Comm. Algebra 30, 2511–2528 (2002).
  • [2] Ba¸ser, M., Ko¸san, M.T.: On quasi-Armendariz modules. Taiwanese J. Math. 12, 573–582 (2008).
  • [3] Ba¸ser, M., Kwak, T.K., Lee, Y.: The McCoy condition on skew polynomial rings. Comm. Algebra 37, 4026–4037 (2009).
  • [4] Buhphang, A.M., Rege, M.B.: Semi-commutative modules and Armendariz modules. Arab. J. Math. Sci. 8, 53–65 (2002).
  • [5] Camillo, V., Nielsen, P.P.: McCoy rings and zero-divisors. J. Pure Appl. Algebra 212, 599–615 (2008).
  • [6] Cedo, F.: Zip rings and Malcev domains. Comm. Algebra 19, 1983–1991 (1991).
  • [7] Cui, J., Chen, J.: On McCoy modules. Bull. Korean Math. Soc. 48, 23–33 (2011).
  • [8] Faith, C.: Algebra I: Rings, Modules and Categories, pp.205–207. Springer-Verlag, New York 1981.
  • [9] Faith, C.: Rings with zero intersection property on annihilators: zip rings. Publ. Mat. 33, 329–332 (1989).
  • [10] Faith, C.: Annihilator ideals, associated primes and Kasch-McCoy commutative rings. Comm. Algebra 19, 1967– 1982 (1991).
  • [11] Forsythe, A.: Divisors of zero in polynomial rings. Amer. Math. Monthly 50, 7–8 (1943).
  • [12] Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings. Acta Math. Hungar. 107, 207–224 (2005).
  • [13] Hirano, Y.: On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra 168, 45–52 (2002).
  • [14] Hong, C.Y., Kim, N.K., Kwak, T.K.: On skew Armendariz rings. Comm. Algebra 31, 103–122 (2003).
  • [15] Hong, C.Y., Kim, N.K., Kwak, T.K., Lee, Y.: Extensions of zip rings. J. Pure Appl. Algebra 195, 231–242 (2005).
  • [16] Huh, C., Lee, Y., Smoktunowicz, A.: Armendariz rings and semicommutative rings. Comm. Algebra 30, 751–761 (2002).
  • [17] Kim, N.K., Lee, Y.: Armendariz rings and reduced rings. J. Algebra 223, 477–488 (2000).
  • [18] Ko¸san, M.T.: Extensions of rings having McCoy condition. Canad. Math. Bull. 52, 267–272 (2009).
  • [19] Lee, T.K., Zhou, Y.: Reduced modules, Rings, Modules, Algebras and Abelian groups. Lecture Notes in Pure and Appl. Math., Dekker, New York 236, 365–377 (2004).
  • [20] Lei, Z., Chen, J., Ying, Z.: A question on McCoy rings. Bull. Aust. Math. Soc. 76, 137–141 (2007).
  • [21] McCoy, N.H.: Remarks on divisors of zero. Amer. Math. Monthly 49, 286–295 (1942).
  • [22] Nielsen, P.P.: Semi-commutativity and the McCoy condition. J. Algebra 298, 134–141 (2006).
  • [23] Rege, M.B., Chhawchharia, S.: Armendariz rings. Proc. Japan Acad. Ser. A Math. Sci. 73, 14–17 (1997).
  • [24] Scott, W.R.: Divisors of zero in polynomial rings. Amer. Math. Monthly 61, 336 (1954).
  • [25] Ying, Z., Chen, J., Lei, Z.: Extensions of McCoy rings. Northeast Math. J. 24, 85–94 (2008).
  • [26] Zelmanowitz, J.M.: The finite intersection property on annihilator right ideals. Proc. Amer. Math. Soc. 57, 213–216 (1976).
  • [27] Zhang, C., Chen, J.: α-skew Armendariz modules and α-semicommutative modules. Taiwanese J. Math. 12, 473– 486 (2008).
  • [28] Zhang, C., Chen, J.: Zip modules. Northeast Math. J. 24, 240–256 (2008).