The provenance of coarse-grained turbidite sandstones in the Kırkgeçit Formation (western part of the Elazığ Basin-east Turkey)
The provenance of coarse-grained turbidite sandstones in the Kırkgeçit Formation (western part of the Elazığ Basin-east Turkey)
Modal analysis of sandstones for conglomerate rich marine basins is useful for investigating the provenance types surrounded by plate tectonics. Different kinds of siliciclastic rocks are important indicators for defining the paleogeography and geotectonic conditions of the sedimentary basin by provenance analysis. This paper, which focuses on the petrography and provenance of conglomerate rich turbidite systems, is one of the rarest studies on the sedimentary characteristics in the scientific literature. In this context, the study was carried out in the western part of the Elazığ Basin. The Middle Eocene–Oligocene basin infill called the Kırkgeçit Formation is characterised by the conglomerate rich submarine channel deposits and coarse-grained turbidite sandstones. Petrographically, the coarse-grained sandstones of the Kırkgeçit Formation are composed of litharenite and rarely feldspathic litharenite, lithic arkose and rock fragments. Mostly the components are derived from volcanic and plutonic rocks of the Elazığ Magmatites. Fossils and fossil fragments are transported from the shallow part of the western Elazığ Basin. The components transported from metamorphic rock fragments, which are rarely observed in the sandstone samples, are composed of recrystallized limestones and derived from Keban Metamorphites in the northern part of the basin. The provenance studies and petrographic analyses indicated that the conglomerate rich channels and coarse-grained sediments of turbidite sandstones in the Kırkgeçit Formation were plotted mostly to the recycled orogenic and undissected arc type source rocks. Therefore, this type of source rocks has been reflected as a back-arc basin deposit during MiddleUpper Eocene. The geotectonic evolution of the western Elazığ Basin has also supported this remark.
___
- Aksoy E. Tatar Y (1990). Van ili doğu-kuzeydoğu yöresinin stratigrafisi ve tektoniği. TÜBİTAK Doğa Mühendislik ve Çevre Bilimleri Dergisi 14: 628 -644 (in Turkish).
- Aksoy E, Turan M, Türkmen İ, Özkul M (1996). Tertiary evolution of the Elazığ basin E. Turkey. In: Korkmaz S and Akçay M (editors). Proceedings of 30th Anniversary Symposium of Geology Department; Karadeniz Technical University, Trabzon, Turkey. pp. 293-310.
- Aksoy E, Türkmen İ, Turan M (2005). Tectonics and sedimentation in convergent margin basins: an example from the Tertiary Elazığ Basin, Eastern Turkey. Journal of Asian Earth Sciences 25: 459-472. doi: 10.1016/j.jseaes.2004.04.009
- Alkaç O (2020). Kırkgeçit formasyonu (orta eosen-oligosen) derin deniz tortullarının sedimantolojisi, Baskil (Elazığ) güneybatısı. PhD, Fırat University, Elazığ, Turkey (in Turkish).
- Altınlı E (1966). Geology of eastern and southeastern anatolia, part I. M.T.A. Bulletin 66: 35-76.
- Asutay HJ (1986). Baskil (Elazığ) çevresinin jeolojisi ve Baskil Magmatitleri’nin petrolojisi. M.T.A. Bulletin 107: 49-73 (in Turkish).
- Baiyegunhi C, Liu K, Gwavava O (2017). Modal composition and tectonic provenance of the sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province, South Africa. Open Geosciences 9: 491-508. doi: 10.1515/geo-2017-0038
- Basu A, Young S, Suttner L, James W, Mack G (1975). Re-evaluation of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Research 45: 873–882.
- Baştuğ C (1976). Bitlis napının stratigrafisi ve güneydoğu anadolu sütur zonunun evrimi. Journal of earth and human 3 (1): 55-61 (in Turkish).
- Beyarslan M, Bingol AF (2000). Petrology of a supra-subduction zone ophiolite (Elazığ, Turkey). Canadian Journal of Earth Sciences 37 (10): 1411–1424. doi: 10.1139/cjes-37-10-1411
- Beyarslan M, Bingöl AF (2010). Ultramafics and mafic bodies in cumulates of Ispendere and Kömürhan Ophiolites (SE Anatolian Belt, Turkey). Turkish Journal of Sciences & Technology 5 (1): 19- 36.
- Beyarslan M, Bingöl AF (2014). Petrology of the Ispendere, Kömürhan and Guleman Ophiolites (Southeast Turkey): subduction initiation rule (SIR) Ophiolites and Arc Related Magmatics. In: 3rd Annual International Conference on Geological and Earth Sciences (GEOS 2014); Singapore. pp. 50-59. doi: 10.5176/2251-3353-GEOS14.31.
- Beyarslan M, Bingöl AF (2018). Zircon U-Pb age and geochemical constraints on the origin and tectonic implications of Late Cretaceous intra-oceanic arc magmatics in the Southeast Anatolian Orogenic Belt (SE-Turkey). Journal of African Earth Sciences 147: 477-497. doi: 10.1016/j.jafrearsci.2018.07.001
- Bingöl AF (1987). New findings on the structural setting on the chromites in the Guleman Ophiolitic Massive (Eastern Taurus). Fırat University Journal of Sciences and Technology 1: 37-46.
- Bingöl AF (1994). The geochemistry and petrology of magmatic rocks from Kocali Complex, located within Çermik district (Diyarbakır, Southeast Turkey). Turkish Journal of Earth Science 3: 55-61.
- Blatt H, Christie JM (1963). Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. Journal of Sedimentary Research 33 (3): 559–579. doi: 10.1306/74D70EBB-2B21-11D7- 8648000102C1865D
- Botziolis C, Angelos GM, Pantopoulus C, Kostopoulou S, Catuneanu O et al. (2021). Stratigraphic and paleogeographic development of a deep-marine foredeep: Central Pindos foreland basin, western Greece. Marine and Petroleum Geology 128: 1–27. doi: 10.1016/j.marpetgeo.2021.105012
- Chen MH, Mao JW, Li C, Zhang, ZQ, Dang Y (2015). Re–Os isochron ages forarsenopyrite from Carlin–like gold deposits in the Yunnan–Guizhou Guangxi“golden triangle”, southwestern China. Ore Geology Reviews 64: 316–327. doi: 10.1016/j. oregeorev.2014.07.019
- Chima P, Baiyegunhi C, Liu K, Gwavava O (2018). Petrography, modal composition and tectonic provenance of some selected sandstones from the Molteno, Elliot and Clarens Formations, Karoo Supergroup, in the Eastern Cape Province, South Africa. Open Geoscience 10: 821–833. doi: 10.1515/geo-2018-0064
- Critelli S, Le Pera E, Ingersoll RV (1997). The effects of source lithology, transport, deposition and sampling scale on the composition of southern California sand. Sedimentology 44: 653–671. doi: 10.1046/j.1365-3091.1997.d01-42.x
- Cronin BT, Hartley A, Çelik H, Hurst A, Türkmen İ et al. (2000a). Equilibrium profile development in graded deep water slopes: Eocene, Eastern Turkey, Journal of the Geological Society 157: 943-955. doi: 10.1144/jgs.157.5.943
- Cronin BT, Hurst A, Çelik H, Türkmen İ (2000b). An outcrop example of channel and levee complex in an ancient deepwater slope environment. Sedimentary Geology 132: 205–216.
- Cronin BT, Çelik H, Hurst A, Türkmen İ (2005). Mud prone entrenched deep-water slope channel complexes from the Eocene of Eastern Turkey. Geological Society London Special Publications 244 (1): 155-180. doi: 10.1144/GSL. SP.2005.244.01.10
- Çelik H (2013). The effects of linear coarse-grained slope channel bodies on the orientations of fold developments: a case study from the Middle Eocene – Lower Oligocene Kırkgeçit Formation, Elazığ, Eastern Turkey. Turkish Journal of Earth Sciences 22 (2): 20-38. doi: 10.3906/yer-1202-5
- Çelik H, Cronin BT (2020). Controls on deep-water slope channel complex fill, propagation, stacking, and orientation in the Middle Eocene-Oligocene Kırkgeçit Formation, Elazığ, eastern Turkey. Turkish Journal of Earth Sciences 29: 1-28. doi: 10.3906/ yer-2001-26
- Dickinson WR (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Research 40 (2): 695-707. doi: 10.1306/74D72018-2B21-11D7 8648000102C1865D
- Dickinson WR, Suczek CA (1979). Plate tectonics and sandstone compositions. AAPG (Am. Assoc. Pet. Geol.) Bulletin 63: 2164– 2182. doi: 10.1306/2F9188FB-16CE-11D7-8645000102C1865D
- Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC et al. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94: 222–235. doi: 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
- Dickinson WR (1988). Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: Kleinspehn, K.L., Paola, C. (Eds.), New Perspec- tivpes in Basin Analysis. Springer-Verlag; New York. pp. 3- 25. doi: 10.1007/978-1-4612-3788-4_1
- Dilek Y, Delaloye M. (1992). Structure of the Kızıldağ ophiolite, a slowspread Cretaceous ridge segment north of the Arabian promontory. Geology 20, pp. 19–22. doi: 10.1130/0091-7613(1992)020<0019:SOTKOA>2.3.CO;2
- Dilek Y, Thy P (1998). Structure, petrology, and seafloor spreading tectonics of the Kızıldağ Ophiolite (Turkey). In Modern ocean Floor Processes and the geological Record. Geological Society Special Publication 148: 43–69. doi: 10.1144/GSL. SP.1998.148.01.04
- Dilek Y, Thy P (2009). Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos 113 (1-2): 68-87. Doi: 10.1016/j. lithos.2009.05.044
- Ertürk MA, Beyarslan M, Chung SL, Lin TH (2018). Eocene magmatism (Maden complex) in the Southeast Anatolian Orogenic Belt: Magma genesis and tectonic implications. Geoscience Frontiers 9 (6): 1829 – 1847. doi: 10.1016/j. gsf.2017.09.008
- Fenn MP (1986). On the origin of graphic granite, American Mineralogist 71 (3-4): 325-330.
- Folk RL (1968). Petrology of sedimentary rocks. Hemphilrs Book Store, Austin, 170 p.
- Folk RL, Andrews PB, Lewis DW (1970). Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics 13 (4): 937-968. doi: 10.1080/00288306.1970.10418211
- Fourteu MN, Tyrrell S, Chew DM, Drakou F, Plaff K et al. (2020). Deep- versus shallow-marine sandstone provenance in the mid-Carboniferous Clare Basin, western Ireland. Journal of the Geological Society 178: jgs2020- 216. doi: 10.1144/jgs2020-216
- Galloway WE, Hobday DK (1996). Depositional systems and facies within a sequence stratigraphic framework. In: Galloway WE (editor). Terrigenous Clastic Depositional Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61018- 9_11
- Giacomone G, Olariu C, Steel R, Shin, M (2020). A coarse-grained basin floor turbidite system – the Jurassic Los Molles Formation, Neuquen Basin, Argentina. Sedimentology 67: 1–35. doi: 10.1111/sed.12771
- Gong DX, Wu CH, Zou H, Zhou X, Zhou Y et al. (2021). Provenance analysis of Late Triassic turbidites in the eastern Songpan–Ganzi Flysch Complex: Sedimentary record of tectonic evolution of the eastern Paleo-Tethys Ocean. Marine and Petroleum Geology 126: 1-18. doi: 10.1016/j.marpetgeo.2021.104927
- Graham SA, Ingersoll RV, Dickinson WR (1976). Common provenance for lithic grains in Carboniferous sandstones from Ouachita Mountains and Black Warrior Basin. Journal of Sedimentary Petrography 46: 620-632. doi: 10.1306/212F7009- 2B24-11D7-8648000102C1865D
- Henstra GA, Grundvåg SA, Johannessen EP, Kristensen TB, Midkandal I et al. (2016). Depositional processes and stratigraphic architecture within a coarse-grained riftmargin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology 76: 187–209. doi: 10.1016/j.marpetgeo.2016.05.018
- Johnson MR (1991). Sandstone petrography, provenance and plate tectonic setting in Gondwana context of the southeastern Cape-Karoo Basin. Geological Survey of South Africa 94 (2/3): 137-154.
- Kaya A (2016). Keban Metamorfitleri’nin stratigrafisine ilişkin yeni yaş bulguları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22(3): 189-199 (in Turkish). doi: 10.5505/ pajes.2014.70188
- Karaoğlan F, Parlak O, Klötzli U, Koller F, Rızaoğlu T (2013). Age and duration of intraoceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern neotethys, SE Anatolia. Geoscience Frontiers 4: 399–408. doi: 10.1016/j.gsf.2012.11.011
- Liang C, Liu Y, Hu Z, Li X, Li W et al. (2019). Provenance study from petrography and geochronology of Middle Jurassic Haifanggou Formation in Xingcheng Basin, western Liaoning Province. Geological Journal 55 (4): 1-27. doi: 10.1002/gj.3509
- Liu YM, Dai JG, Wang CS, Li HA, Wang Q et al. (2020). Provenance and tectonic setting of Upper Triassic turbidites in the eastern Tethyan Himalaya: implications for early–stage evolution of the Neo–Tethys. Earth-Science Reviews 200: doi: 10.1016/j. earscirev.2019.103030.
- Mork M, Johnsen SO (2005). Jurassic sandstone provenance and basement erosion in the Møre margin – Froan Basin area. NGU-BULL 443: 5 - 18.
- Olazabâl SX, Tunik MA, Paredes JM (2020). Sandstone petrography and provenance of the Chubut Group (Cretaceous) in the Canadon Matasiete (Golfo San Jorge Basin, central Patagonia): Implications for basin evolution and alluvial organization. Journal of South American Earth Sciences 98: 1-16. doi: 10.1016/j.jsames.2019.102463
- Özcan E, Less G, Jovanne L, Catanzarariti R, Frontalini F et al. (2019). Intergrated biostratigraphy of the Middle to Upper Eocene Kırkgeçit Formation (Baskil Section, Elazığ, Eastern Turkey): larger benthic foraminiferal perspective. Mediterranean Geoscience Reviews 1 (1): 55-90. doi: 10.1007/s42990-019- 00004-6
- Özkul M, Kerey İE (1995). Hibrit arenitler: Eosen türbidit kumtaşlarının petrolojisi, Baskil, Elazığ. Süleyman Demirel Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 8: 143- 157 (in Turkish).
- Perincek D (1979a). Interrelations of the Arab and Anatolian plates. In: First Geological Congress on Middle East; Ankara, Turkey. 34 p.
- Perinçek D (1979b). The Geology of Hazro-Korudağ-ÇüngüşMaden-Ergani-Hazar- Elazığ- Malatya Region. Geological Bulletin of Turkey, Guide Book. pp. 3-33.
- Pettijohn FJ, Potter PE, Siever R (editors) (1973). Sand and sandstones. 1st ed. Berlin, the Germany: Springer. Pettijohn FJ (editor) (1975). Sedimentary rocks. 3rd ed. New York, USA: Harper and Row.
- Reading HG, Richards M (1994). Turbidite systems in deep-water basin margins classified by grain size and feeder system. AAPG Bulletin 78: 792-82. doi: 10.1306/A25FE3BF-171B-11D7- 8645000102C1865D
- Robertson AHF, Dixon DE (1984). Introduction: Aspects of the geological evolution of the Eastern Mediterranean, In: Dixon, J.E, Robertson, A.H.F. (editors). The Geological Evolution of the Eastern Mediterranean. Geological Society, London, Special Publication 17: 1–74. doi: 10.1144/GSL.SP.1984.017.01.02
- Sallam ES, Wanas HA (2019). Petrography and geochemistry of the Jurassic siliciclastic rocks in the Khashm El-Galala area (NW Gulf of Suez, Egypt): implication for provenance, tectonic setting and source area paleoweathering. Journal of African Earth Sciences 160: 1-15. doi: 10.1016/j.jafrearsci.2019.103607
- Sirel E, Metin S, Sözeri B (1975). Palu (KD Elazığ) denizel Oligoseni’nin stratigrafisi ve mikropaleontolojisi. Türkiye Jeoloji Kurultay Bülteni 18 (2): 175-180 (in Turkish).
- Şengör AMC (1980). Fundamentals of the Neotectonics of Turkey. Special Publication of the Geological Society of Turkey 2: 40 p.
- Şengor AMC, Yılmaz Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75: 181–241. doi: 10.1016/0040-1951(81)90275-4
- Tucker M (1991). Sequence stratigraphy of carbonate-evaporite basins: models and application to the Upper Permian (Zechstein) of Northeast England and Adjoining North Sea. Journal of the Geological Society 148 (6): 1019-1036. doi: 10.1144/gsjgs.148.6.1019
- Turan M, Bingöl AF (1991). Tectono-stratigraphic characteristics of the region between Kovancılar–Baskil (east of Elazığ, E. Turkey). In: Proceedings of Ahmet Acar Symposium; Cukurova University, Adana, Turkey. pp. 193-204.
- Wanas HA, Abdel-Maguid NM (2006). Petrography and geochemistry of the Cambro Ordovician Wajid Sandstone, southwest Saudi Arabia: implications for provenance and tectonic setting. Journal Asian Earth Sciences 27: 416–429. doi: 10.1016/J.JSEAES.2005.05.002
- Wanas HA, Assal EM (2021). Provenance, tectonic setting and source area paleoweathering of sandstones of the Bahariya Formation in the Bahariya Oasis, Egypt: An implication to paleoclimate and paleogeography of the southern NeoTethys region during Early Cenomanian. Sedimentary Geology 413: 1-22. doi: 10.1016/j.sedgeo.2020.105822.
- Winn RD, Dott RH (1979). Deep-water fan-channel conglomerates of Late Cretaceous age, Southern Chile. Sedimentology 26: 203-228. doi: 10.1111/j.1365-3091.1979.tb00351.x
- Yazgan E (1981). A study of active continental paleomargin in the eastern Taurides (Upper Cretaceous–Middle Eocene) Malatya– Elazığ (eastern Turkey). Bull. Inst. Earth Sci. Hacettepe Univ., 7: 83–104 (in Turkish with anabstract in English).
- Yazgan E (1983). A Geotraverse between the Arabian platform and the Munzur nappes. In: Guide book for excursion V. Int Symp on Geology of the Taurus belt; Ankara, Turkey. pp. 26–29.