Turkish perlite supported nickel oxide as the heterogeneous acid catalyst for a series of Claisen–Schmidt condensation reactions

Turkish perlite supported nickel oxide as the heterogeneous acid catalyst for a series of Claisen–Schmidt condensation reactions

Potentially active and eco-friendly solid acid catalysts have been synthesized by loading different weight percentages (10, 15, and 50) of nickel oxide on thermally activated Turkish perlite through the deposition-precipitation method. Structural features of prepared catalysts were analyzed using BET surface area analysis, X-ray diffraction, scanning electron microscope (SEM), SEM-EDX, transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), pyridine adsorbed FT-IR, UV-Vis diffuse reflectance spectroscopy (DRS), and thermogravimetric analysis (TGA) techniques. Pyridine adsorbed FT-IR analysis confirmed the presence of the optimum amount of Bronsted acidic sites in a catalyst having 15 wt. % loading of nickel oxide, which was tested for catalyzing a series of Claisen–Schmidt condensation of cyclohexanone and aromatic aldehydes to produce good isolated yield (90%–93%) of 2,6-bis(substituted benzylidene)cyclohexanones, significantly used in anti-tumor and cytotoxic activities. The high catalytic efficiency of the chosen catalyst remains almost intact up to six reaction cycles. On higher wt. % loading of nickel oxide, crystallite size increases along with agglomeration of larger nickel oxide particles on catalyst surface resulting in pore blockage and poor catalytic activity. Loading of NiO on the surface of thermally activated Turkish perlite was confirmed by SEM-EDX analysis, and TEM observations show that the particle size of the preferred catalyst was less than 50 nm. Based on results drawn from XRD, FT-IR, pyridine adsorbed FTIR, UV-Vis DRS studies, model structures were proposed for Turkish perlite and all prepared catalysts. During this work, the catalytic potential of the preferred catalyst was compared with other previously reported catalysts, and it showed appreciable results. The formed products were further confirmed by their melting point and 1 H-NMR analysis.

___

  • 1. Vekariya RH, Prajapati NP, Patel HD. Silica-supported polyphosphoric acid (PPA-SiO2 ): An efficient and reusable heterogeneous catalyst for eco-friendly organic synthesis. Synthetic communications 2016; 46 (3): 197-219. doi: 10.1080/00397911.2015.1114633
  • 2. Lamba R, Kumar S, Sarkar S. Esterification of decanoic acid with methanol using Amberlyst 15: Reaction kinetics. Chemical Engineering Communications 2018; 205 (3): 281-294. doi: 10.1080/00986445.2017.1387540
  • 3. Chandane VS, Rathod AP, Wasewar KL, Sonawane SS. Synthesis of cenosphere supported heterogeneous catalyst and its performance in esterification reaction. Chemical Engineering Communications 2018; 205 (2): 238-248. doi: 10.1080/00986445.2017.1384922
  • 4. Hosseinzadeh Z, Ramazani A, Razzaghi-Asl N, Slepokura K, Lis T. Boric acid as an efficient and green catalyst for the synthesis of 2-amino-4,6-diarylnicotinonitrile under microwave irradiation in solvent-free conditions. Turkish Journal of Chemistry 2019; 43: 464- 474. doi:10.3906/kim-1807-101
  • 5. Malpani SK, Rani A. A Greener route for synthesis of fly ash supported heterogeneous acid catalyst. Materials Today: Proceedings 2019; 9 (3): 551-559. doi: 10.1016/j.matpr.2018.10.375
  • 6. Khatri C, Mishra MK, Rani A. Synthesis and characterization of fly ash supported sulfated zirconia catalyst for benzylation reactions. Fuel Processing Technology 2010; 91 (10): 1288-1295. doi: 10.1016/j.fuproc.2010.04.011
  • 7. Khatri C, Jain D. Fly ash-supported cerium triflate as an active recyclable solid acid catalyst for Friedel–Crafts acylation reaction. Fuel 2010; 89 (12): 3853-3859. doi: 10.1016/j.fuel.2010.07.007
  • 8. Rani A, Khatri C, Hada R. Fly ash supported scandium triflate as an active recyclable solid acid catalyst for Friedel-Crafts acylation reaction. Fuel Processing Technology 2013; 116: 366-373. doi: 10.1016/j.fuproc.2013.08.003
  • 9. Malpani SK, Goyal D, Katara S, Rani A. Green, efficient and economical coal fly ash based phosphomolybdic acid catalysts: preparation, characterization and application. Chemical Papers 2021; 75: 3017-3034. doi: 10.1007/s11696-020-01501-x
  • 10. Katara S, Kabra S, Goyal D, Hada R, Sharma A et al. Fly ash to solid base catalyst: synthesis, characterization and catalytic application. Materials Today: Proceedings 2021; 42 (2): 1409-1416. doi: 10.1016/j.matpr.2021.01.148
  • 11. Vichaphund S, Aht-Ong D, Sricharoenchaikul V, Atong D. Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste. Environmental Technology 2014; 35 (17): 2254-2261. doi: 10.1080/09593330.2014.900118
  • 12. Wang Y, Zhang M, Ding X. Biodiesel production from soybean oil using modified calcium loaded on rice husk activated carbon as a lowcost basic catalyst. Separation Science and Technology 2018; 53 (5): 807-813. doi: 10.1080/01496395.2017.1374411
  • 13. Tinh NT, Van NTT, Anh NP, Ha HKP, Tri N. CuO and CeO2 -doped catalytic material synthesized from red mud and rice husk ash for p-xylene deep oxidation. Journal of Environmental Science and Health, Part A 2019; 54 (4): 4352-4358. doi: 10.1080/10934529.2018.1551649
  • 14. Vichaphund S, Sricharoenchaikul V, Atong D. Utilization of fly ash-derived HZSM-5: catalytic pyrolysis of Jatropha wastes in a fixed-bed reactor. Environmental Technology 2017; 38 (13-14): 1660-1672. doi: 10.1080/09593330.2016.1244567
  • 15. Hwang H, Lee JH, Choi I, Choi JW. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations. Environmental Technology 2019; 40 (13): 1657-1667. doi: 10.1080/09593330.2018.1427799
  • 16. Tsaousi G-M, Douni I, Panias D. Experimental evaluation of efficient Si dissolution from perlite at low level activator’s concentration. Minerals 2018; 8 (4): 160-167. doi: 10.3390/min8040160
  • 17. Angelopoulos PM, Maliachova C, Papakonstantinou K, Taxiarchou M, Diplas S. Structural and physical characteristics of fine perlite expanded with a novel method in a vertical electric furnace. Mineral Processing and Extractive Metallurgy 2016; 125: 71-80. doi: 10.1080/03719553.2016.1156244
  • 18. Bastani D, Safekordi AA, Alihosseini A, Taghikhani V. Study of oil sorption by extanded perlite at 298.15 K. Separation and Purification Technology 2006; 52: 295-300. doi: 10.1016/j.seppur.2006.05.004
  • 19. Dogan M, Alkan M. Adsorption kinetics of methyl violet onto perlite. Chemosphere 2003; 50 (4): 517-528. doi: 10.1016/S0045- 6535(02)00629-X
  • 20. Rashad AM. A synopsis about perlite as building material – A best practice guide for civil engineer. Construction and Building Materials 2016; 121: 338-353. doi: 10.1016/j.conbuildmat.2016.06.001
  • 21. Mostaedi MT, Ghassabzadeh H, Maragheh MG, Ahmadi SJ, Taheri H. Removal of Cadmium and Nickel from aqueous solution using expanded perlite. Brazilian Journal of Chemical Engineering 2010; 27 (2): 299-308. doi: 10.1590/S0104-66322010000200008
  • 22. Silber A, Bar-Yosef B, Levkovitch I, Kautzky L, Minz D. Kinetics and mechanisms of pH-dependent Mn (II) reactions in plant-growth medium. Soil Biology Biochemistry 2008; 40: 2787-2795. doi: 10.1016/j.soilbio.2008.07.026
  • 23. Zhang S, Li H, Yang Z. Synthesis, structural characterization and evaluation of a novel floating metal-free photocatalyst based on $g-C_3N_4$ grafted expanded perlite for the degradation of dyes. Materials Technology 2018; 33 (1): 1-9. doi: 10.1080/10667857.2017.1367148
  • 24. Balat M. Diesel-like fuel obtained by catalytic pyrolysis of waste engine oil. Energy, Exploration and Exploitation 2008; 26 (3): 197-208. doi: 10.1260/014459808786933735
  • 25. Kolvari E, Koukabi N, Hosseini MM, Khandani Z. Perlite: an inexpensive natural support for heterogenization of $HBF_4$ . RSC Advances, 2015; 5: 36828-36836. doi: 10.1039/c5ra03229f
  • 26. Radonjic V, Krstic J, Loncarevic D, Jovanovic D, Vukelic N et al. Perlite as a potential support for nickel catalyst in the process of sunflower oil hydrogenation. Russian Journal of Physical Chemistry A 2015; 89 (13): 2359-2366. doi: 10.1134/S0036024415130294
  • 27. Brindha K, Amutha P, Krishnakumar B, Sobral AJFN. BiCl3 -modified perlite as an effective catalyst for selective organic transformations: a green protocol. Research on Chemical Intermediates 2019; 45: 4367-4381. doi: 10.1007/s11164-019-03836-x
  • 28. Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M. Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red. Journal of Alloys and Compounds 2016; 680: 309-314. doi: 10.1016/j.jallcom.2016.04.008
  • 29. Nasrollahzadeh M, Sajadi SM. Rostami-Vartooni A, Bagherzadeh M, Safari R, Immobilization of copper nanoparticles on perlite: Green synthesis, characterization and catalytic activity on aqueous reduction of 4-nitrophenol. Journal of Molecular Catalysis A: Chemical 2015; 400: 22-30. doi: 10.1016/j.molcata.2015.01.032
  • 30. Kolvari E, Koukabi N, Hosseini MM. Perlite: A cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction. Journal of Molecular Catalysis A: Chemical 2015; 397: 68-75. doi: 10.1016/j. molcata.2014.10.026
  • 31. Ermakova MA, Ermakov DY. High-loaded nickel–silica catalysts for hydrogenation, prepared by sol–gel Route: structure and catalytic behavior. Applied Catalysis A: General 2003; 245: 277-288. doi: 10.1016/S0926-860X(02)00648-8
  • 32. Achouri IE, Abatzoglou N, Lefebvre CF, Braidy N. Diesel steam reforming: Comparison of two nickel aluminate catalysts prepared by wet-impregnation and co-precipitation. Catalysis Today 2013; 207: 13-20. doi: 10.1016/j.cattod.2012.09.017
  • 33. Rodríguez JL, Valenzuela MA, Tiznado H, Poznyak T, Chairez I et al. A comparative study of alumina-supported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid. Journal of Nanoparticle Research 2017; 19 (54): 1-11. doi: 10.1007/s11051-017-3766-1
  • 34. Frontera P, Macario A, Aloise A, Crea F, Antonucci PL et al. Catalytic dry-reforming on Ni–zeolite supported catalyst. Catalysis Today 2012; 179 (1): 52-60. doi: 10.1016/j.cattod.2011.07.039
  • 35. Zhang L, Wen X, Kong T, Zhang L, Gao L et al. Preparation and mechanism research of Ni-Co supported catalyst on hydrogen production from coal pyrolysis. Scientific Reports 2019; 9: 1-13. doi: 10.1038/s41598-019-44271-7
  • 36. Solsona B, Concepcion P, Lopez Nieto JM, Dejoz A, Cecilia JA et al. Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science and Technology 2016; 6: 3419-3429. doi: 10.1039/C5CY01811K
  • 37. Hada R, Goyal D, Yadav VS, Siddiqui N, Rani A. Synthesis of NiO nanoparticles loaded fly ash catalyst via microwave assisted solution combustion method and application in hydrogen peroxide decomposition. Materials Today: Proceedings 2020; 28 (1): 119-123. doi: 10.1016/j.matpr.2020.01.411
  • 38. Chistyakov AV, Zharova PA, Nikolaev SA, Tsodikov MV. Direct $Au-Ni/Al_2O_3$ catalysed cross-condensation of ethanol with isopropanol into pentanol-2. Catalysis Today 2017; 279 (1): 124-132. doi: 10.1016/j.cattod.2016.06.016
  • 39. Hermida L, Abdullah AZ, Mohamed AR. Synthesis and characterization of mesostructured cellular foam (MCF) silica loaded with nickel nanoparticles as a novel catalyst. Materials Sciences and Applications 2013; 4: 52-62. doi: 10.4236/msa.2013.41007
  • 40. Dimmock JR, Hamon NW, Hindmarsh KW, Sellar AP, Turner WA et al. Evaluation of 2-benzylidenecyclohexanones and 2,6-bis(benzylidene) cyclohexanones for antitumor and cytotoxic activity and as inhibitors of mitochondrial function in yeast: Metabolism studies of (E)-2- benzylidenecyclohexanone. Journal of Pharmaceutical Sciences 1976; 65 (4): 538-543. doi: 10.1002/jps.2600650415
  • 41. Kang LQ, Song GH, Wang JY, Wei BG. Synthesis of α,α′-Bis(Substituted Benzylidene)cycloalkanones catalyzed by amino-functionalized ıonic liquid. Journal of The Chinese Chemical Society 2008; 55: 1125-1128. doi: 10.1002/jccs.200800165
  • 42. Rahman MAFM, Ali R, Jahng Y, Kadi AA. A facile solvent free Claisen-Schmidt Reaction: Synthesis of α, α′-Bis-(Substituted-benzylidene) cycloalkanones and α, α′-Bis-(Substituted-alkylidene) cycloalkanones. Molecules 2012; 17 (1): 571-583. doi: 10.3390/molecules17010571
  • 43. Tsay MT, Chang FW. Characterization of rice husk ash-supported nickel catalysts prepared by ion exchange. Applied Catalysis A: General 2000; 203: 15-22. doi: 10.1016/S0926-860X(00)00464-6
  • 44. Merabti R, Bachari K, Halliche D, Rassoul Z, Saadi A. Synthesis and characterization of activated carbon-supported copper or nickel and their catalytic behavior towards benzaldehyde hydrogenation. Reaction Kinetics, Mechanisms and Catalysis 2010; 101: 195-208. doi: 10.1007/s11144-010-0215-x
  • 45. Acosta D, Martinez J, Carrera C, Erdmann E, Gonzo E et al. New material as support for nickel boride catalyst. Latin American Applied Research 2006; 36: 317-320.
  • 46. Zhao A, Ying W, Zhang H, Ma H, Fang D. $Ni–Al_2O_3$ catalysts prepared by solution combustion method for syngas methanation. Catalysis Communications 2012; 17: 34-38. doi: 10.1016/j.catcom.2011.10.010
  • 47. Zangouei M, Moghaddam AZ, Arasteh M. The influence of nickel loading on reducibility of $NiO/Al_2O_3$ catalysts synthesized by sol-gel method. Chemical Engineering Research Bulletin 2010; 14: 97-102. doi: 10.3329/cerb.v14i2.5052
  • 48. Kalapathy U, Proctor A, Shultz J. A simple method for production of pure silica from rice husk ash. Bioresource Technology 2000; 73 (3): 257-262. doi: 10.1016/S0960-8524(99)00127-3
  • 49. Jain D, Khatri C, Rani A. Synthesis and characterization of novel solid base catalyst from fly ash. Fuel 2011; 90: 2083-2088. doi: 10.1016/j. fuel.2010.09.025
  • 50. Javed SH, Naveed S, Feroze N, Zafar M, Shafaq M. Crystal and Amorphous Silica from $KMnO_4$ Treated and Untreated Rice Husk. Journal of Quality and Technology Management 2010; 6 (1): 81-90. Corpus ID: 173171822
  • 51. Martinez JR, Palomares-Sanchez S, Ortega-Zarzosa G, Ruiz F, Chumakov Y. Rietveld refinement of amorphous SiO2 prepared via sol-gel method. Materials Letters 2006; 60: 3526-3529. doi: 10.1016/j.matlet.2006.03.044
  • 52. Prakasham RS, Devi GS, Rao CS, Sivakumar VSS, Sathish T et al. Nickel impregnated silica nanoparticle synthesis and their evaluation for biocatalyst immobilization. Applied Biochemistry Biotechnology 2010; 160: 1888-1895. doi: 10.1007/s12010-009-8726-5
  • 53. Gamman JJ, Millar GJ, Rose G, Drennan J, Characterization of $SiO_2$ -supported nickel catalysts for carbon dioxide reforming of methane. Journal of the Chemical Society Faraday Transactions 1998; 94 (5): 701-710. doi: 10.1039/A706730E
  • 54. He M, Chernov AI, Obraztsova ED, Sainio J, Rikkinen E et al. Low temperature growth of SWNTs on a nickel catalyst by thermal chemical vapor deposition. Nano Research 2011; 4 (4): 334-342. doi: 10.1007/s12274-010-0088-3
  • 55. Kaufhold S, Reese A, Schwiebacher W, Dohrmann R, Grathoff GH et al. Porosity and distribution of water in perlite from the island of Milos, Greece. SpringerPlus 2014; 3 (598): 1-10. doi: 10.1186/2193-1801-3-598
  • 56. Saufi H, Alouani ME, Alehyen S, Achouri ME, Aride J et al. Photocatalytic degradation of methylene blue from aqueous medium onto perlite-based geopolymer. International Journal of Chemical Engineering 2020; 2020: 1-7. doi: 10.1155/2020/9498349
  • 57. Celik AG, Kilic M, Cakal GO. Expanded perlite aggregate characterization for use as a lightweight construction raw material. Physicochemical Problems of Mineral Processing 2013; 49 (2): 689-700. doi: 10.5277/ppmp130227
  • 58. Fazaeli R, Aliyan H, Foroushani SP, Mohagheghian Z. $PW_{12}-APTES@MCF:$ effective nanosized mesoporous composites for the oxidation of benzyl alcohols. Turkish Journal of Chemistry 2014; 38: 372-380. doi:10.3906/kim-1212-40
  • 59. Jain D, Mishra M, Rani A. Synthesis and characterization of novel aminopropylated fly ash catalyst and its beneficial application in base catalyzed Knoevenagel condensation reaction. Fuel Processing Technology 2012; 95: 119-126. doi: 10.1016/j.fuproc.2011.12.005
  • 60. Tahiri N, Khouchaf L, Elaatmani M, Louarn G, Zegzouti A et al. Study of the thermal treatment of SiO2 aggregate. IOP Conference Series: Materials Science and Engineering 2014; 62 (012002): 1-8. doi:10.1088/1757-899X/62/1/012002
  • 61. Saikia BJ, Parthasarathy G. Fourier transform ınfrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. Journal of Modern Physics 2010; 1 (4): 206-210. doi: 10.4236/jmp.2010.14031
  • 62. Huang X, Yin G, Feng G. Organic modification of montmorillonite and effect of catalytic selectivity on the dimerization of unsaturated fatty acid. Turkish Journal of Chemistry 2018; 42: 50-62. doi:10.3906/kim-1704-61
  • 63. Ermakova MA, Ermakov DY. High-loaded nickel–silica catalysts for hydrogenation, prepared by sol-gel Route: structure and catalytic behaviour. Applied Catalysis A: General 2003; 245: 277–288. doi: 10.1016/S0926-860X(02)00648-8
  • 64. Wu ZY, Wang YM, Huang WW, Yang J, Wang HJ et al. Formation of cubic Ia3d silicas and metal oxide-loaded silicas using a triblock copolymer $(EO_{20}PO70EO_{20})$−acetate mixture as structure director in aqueous solution. Chemistry of Materials 2007; 19 (7): 1613-1625. doi: 10.1021/cm0623615
  • 65. Reddy CR, Bhat YS, Nagendrappa G, Jai Prakash BS. Brønsted and Lewis acidity of modified montmorillonite clay catalysts determined by FT-IR spectroscopy. Catalysis Today 2009; 141 (1-2): 157-160. doi: 10.1016/j.cattod.2008.04.004
  • 66. Musthofa M, Karim AH, Fadzlillaah NA, Hazirah N, Annuar NHR et al. Determination of Lewis and Brönsted acid sites by gas flowinjection technique. Malaysian Journal of Fundamental and Applied Sciences 2010; 6 (2): 127-131. doi: 10.11113/mjfas.v6n2.195
  • 67. Wang Z, Navarette J. Keggin structure and surface acidity of 12-Phosphotungstic acid grafted Zr-MCM-48 mesoporous molecular sieves. World Journal of Nano Science and Engineering 2012; 2 (3): 134-141. doi: 10.4236/wjnse.2012.23017
  • 68. Liu D, Quek XY, Cheo WNE, Lau R, Borgna A et al. MCM-41 supported nickel based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal-support interaction. Journal of Catalysis 2009; 266 (2): 380-390. doi: 10.1016/j.jcat.2009.07.004
  • 69. Lin C, Shaheen A, Muhtaseb A, Ritter JA. Thermal Treatment of Sol-Gel Derived Nickel Oxide Xerogels. Journal of Sol-Gel Science and Technology 2003; 28: 133-141. doi: 10.1023/A:1025653607374
  • 70. Savva PG, Goundani K, Vakros J, Bourikas K, Fountzoula C et al. Benzene hydrogenation over $Ni/Al_2O_3$ catalysts prepared by conventional and sol-gel techniques. Applied Catalysis B: Environmental 2008; 79 (3): 199-207. doi: 10.1016/j.apcatb.2007.10.023
  • 71. Habibi A, Sheikhhosseini E, Bigdeli M, Balalaie S, Farrokhi E. Solvent Free Synthesis of α, á-Bis(substituted-benzylidene)cycloalkanones Using Covalently Anchored Sulfonic Acid on Silica Gel $(SiO_2-R-SO_3H)$ as an Efficient and Reusable Heterogeneous Catalyst. International Journal of Organic Chemistry 2011; 1 (4): 143-147. doi: 10.4236/ijoc.2011.14021
  • 72. Rafiee E, Shahebrahimi S. Nano silica with high surface area from rice husk as a support for 12-Tungstophosphoric acid: an efficient nano catalyst in some organic reactions. Chinese Journal of Catalysis 2012; 33 (8): 1326-1333. doi: 10.1016/S1872-2067(11)60420-8
  • 73. Rafiee E, Rahimi F. A green approach to the synthesis of chalcones via Claisen-Schmidt condensation reaction using cesium salts of 12-tungstophosphoric acid as a reusable nanocatalyst. Monatshefte für Chemie 2013; 144: 361-367. doi: 10.1007/s00706-012-0814-5
  • 74. Kang LQ, Cai YQ, Wang H, Li LH. Solvent-free catalytic preparation of 2,6-dibenzylidenecycloalkanones using 2-hydroxyethylammonium acetate ionic liquid as catalyst. Monatshefte für Chemie 2014; 145: 337-340. doi: 10.1007/s00706-013-1082-8
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Hybrid paper sheets with improved barrier properties

Çağla SÖZ

Green biosynthesis, characterization, and cytotoxic effect of magnetic iron nanoparticles using Brassica Oleracea var capitata sub var rubra (red cabbage) aqueous peel extract

Salih PAŞA, Gülen Melike DEMİRBOLAT, Özge ÇEVİK, Ömer ERDOĞAN

Impact of graphitic carbon nitrides synthesized from different precursors on Schottky junction characteristics

Orhan ALTAN

Evaluation of quercetin as a potential β-lactamase CTX-M-15 inhibitor via the molecular docking, dynamics simulations, and MMGBSA

Emrah SARIYER, Ayşegül SARAL

Synthesis and characterization of benzodioxinone mono-telechelics and their use in block copolymerization

Cumali ÇELİK

Adsorptive performance of MWCNTs for simultaneous cationic and anionic dyes removal; kinetics, thermodynamics, and isotherm study

Abdul ZAHIR, Adnan AKHTAR, Zaheer ASLAM, Irfan YOUSAF

Preparation of ethyl levulinate from wheat stalk over $Zr(SO_4)_2/SiO_2$

Ding kai WANG, Wei ZHAO, Ming yu CUI, Tian-tian GUO, Shui yuan FU, Wei gang LI

Fabrication and characterization of enhanced hydrazine electrochemical sensor based on gold nanoparticles decorated on the vanadium oxide, ruthenium oxide nanomaterials, and carbon nanotubes composites

Süleyman KOÇAK, Sibel KARACA

Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway

Mustafa OKUTAN, Markus GALLE, Hüsnü CANKURTARAN, N. Ceren SÜER, Tarık EREN, Tülin ARASOĞLU

Feature of catalysis on bimetallic alloys Zr with V, Mo, and Fe in the reaction of methanol oxidation

Arif EFENDI, Lala MAGERRAMOVA, Adila ALIYEVA, Lyudmila KOJA ROVA, Elmir BABAYEV