Liman tabanında gel-git sonucu oluşan değişimin fiziksel ve sayısal modellemesi

Bu çalışmada laboratuvar ortamında bir liman modeli tabanında, gel-git sonucu oluşan sediment hareketlerinin fiziksel ve sayısal model sonuçları irdelenmiştir. Araştırmada gel-git sayısı, liman giriş ağzının yeri ve büyüklüğünün tabandaki sediment hareketine etkisi incelenmiştir. Çalışmada sedimenti temsil etmesi için "Katyon Reçinesi" isimli çok hafif bir malzeme kullanılmıştır. Bu malzeme sayesinde fiziksel model içinde laboratuvar şartlarında oluşan düşük akım hızlarına karşın büyük aşınma ve depolama bölgelerinin oluşumu sağlanmıştır. Hidrodinamik ve su kalitesi karakteristiklerinin ve sediment taşınımının sayısal modellemesinde iki boyutlu derinlik boyunca integre edilmiş (DIVAST) bir sayısal model ile "quad-tree" olarak adlandırılan düzgün yapılı olmayan ağ üretme tekniği birleştirilerek kullanılmıştır. Sonrasında modele taban seviyesinin değişimi tahmini de eklenmiştir. Laboratuvardan ve sayısal modelden elde edilen hidrodinamik ve taban seviyesi sonuçları karşılaştırılmış ve sayısal model tahminleri ile laboratuvar ölçüm sonuçlarının yakın olduğu gözlenmiştir. Ayrıca "Katyon Reçinesi" nin laboratuvar şartlarında sediment taşınımı sürecinin fiziksel modellemesinde çok uygun bir malzeme olduğu sonucuna varılmıştır.

Physical and numerical modelling of bed level changes of a harbour due to tidal motion

Details are given of a combined physical and numerical model study of the sediment transport processes in a square harbour caused by tidal motion. Effects on bed level changes due to tidal currents and the configuration of the harbour entrance were investigated. A light weight material called Cation Resin was used in this study to represent bed sediment in the laboratory experiments. This material enabled the erosion and deposition processes to be exaggerated within the model harbour, in which the magnitude of the flow velocities was relatively small. An unstructured mesh generation technique, namely a quad-tree grid, was incorporated into an existing two-dimensional depth-integrated numerical model (DIVAST) to predict the hydrodynamic characteristics and the transport of water quality constituents and the sediment particle fluxes. The numerical model was further refined to include the prediction of bed level changes. Detailed comparisons between the numerical model predictions and the laboratory data were undertaken. It was found that the numerical model predictions and the laboratory measurements were in good agreement. It was also concluded that Cation Resin was an appropriate material to be used for physical modelling of sediment transport processes in laboratory model studies.

___

  • [1] Wang, Z.B., "Theoretical Analysis On Depth-Integrated Modelling of Suspended Sediment Transport", Journal of Hydraulic Research, Vol. 30, pp. 403-421, 1992.
  • [2] Owens, P.H., "Mathematical Modelling of Sediment Transport in Estuaries, Chapter 3: Mechanics of Sediment Transport", Ph.D. Thesis, Vol. 1, University of Birmingham, 1986.
  • [3] van Rijn, L.C. "Mathematical Modelling of Morphological Process in Case of Suspended Sediment Transport", Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1987.
  • [4] Shen, H.W., "Introductory Remarks for the NATO Workshop on Movable Bed Physical Models", NATO Workshop Edited by Shen, H.W., Kluwer Academic- Publishers, pp. 1-12, 1990.
  • [5] Chien, N. ve Wan, Z,, "Mechanics of Sediment Transport", ASCE Press, U.S., 1998.
  • [6] Martinez, R.G., Saavedra, I.C., Power, B.F.D., Valera, E. ve Villoría, C„ "A two- dimensional computational model to simulate suspended sediment transport and bed changes", Journal of Hydraulic Research, Vol. 37, pp. 327-344, 1999.
  • [7] Olsen, N.R.B., "Two-dimensional numerical modelling of reservoir flushing processes", ÍAHR Journal of Hydraulic Research, Vol. 37, pp. 3-16, 1999.
  • [8] Kolahdoozan, M. vc Falconer, R. A,, "Three-Dimensional Geo-morphological Modelling of Estuarine Waters", International Journal of Sediment Research, IRTCES, Vol.18, pp. 1-16, 2003.
  • [9] Finkel, R.A. ve Bentley, T.L., "Quad-trees: A Data Structure for Retrieval on Composite Keys", ACTA Informática, Vol. 4, pp. 1-9, 1974.
  • [10] Samet, H., "Applications of Spatial Data Structures", Addison Wesley Publishing Company, 1990.
  • [ll] Yiu, K.F.C., Greaves, D.M., Saalehi, A. ve Borthwick, A.G.L., "Quadtree Grid Generation information Handling,Boundary Fitting and CFD Applications", Computers & Fluids, Vol. 25, Elsevier Science Ltd., pp. 759-769, 1996.
  • [12] Cruz, L. S., "Numerical Solution of the Shallow Water Equations on Quad-tree Grids", Ph.D. Thesis, University of Oxford, U.K,, 1997.
  • [13] Wang, Z.J., "A Quadtree-Based Adaptive Cartesian/Quad Grid Flow Solver For Navier-Stokes Equations", Computers & Fluids, Vol. 27, pp. 529-549, 1998.
  • [14] Wang, Z.J., "A Fast Nested Multi-grid Viscous Flow Solver for Adaptive Cartesian/Quad Grids", International Journal for Numerical Methods in Fluids, Vol. 33, pp. 657-680, 2000.
  • [15] Park, K.Y., "Locally Enriched Quad-tree Grid Numerical Model lor Nearshore Circulation in the Surf Zone", Water Engineering Research, Vol. 1, pp. 187-197, 2000.
  • [16] Borthwick, A.G.L., Marchant, R.D. ve Copeland, G.J.M., "Adaptive Hierarchical Grid Model of Water-Borne Pollutant Dispersion", Advances in Water Resources, Vol. 23. pp. 849-865.2000.
  • [17] Borthwick, A.G.L., Leon, S.C. ve Josca, J., "Adaptive Quad-tree Model of Shallow-Flow Hydrodynamics", Journal of Hydraulic Research, Vol. 39, pp. 413- 424, 2001.
  • 18. Koçyiğit, Ö,, "Modelling of Water Quality and Sediment Transport in Aquatic- Basins Using an Unstructured Grid System", PhD Thesis, Cardiff University, U.K., 2003.
  • 19. Bedford, K.W., "Diffusion, Dispersion and Sub-grid Parameterization", Coastal Esiuarial and Harbour Engineers Reference Book, edited by. M.B. Abbott and W.A. Price, E&FN Spon Ltd., Chapter 5, pp. 61-82, 1994.
  • 20. Preston, R.W., "Representation of Dispersion in Two-dimensional Water Flow", Report NO.TPRD/L/2783/N84, Central Electricity Research Laboratories, Leatherhead, England, pp. 1-13, 1985.
  • 21. Holly, F.M. ve Polatera, J.M.U., "Dispersion Simulation in Two-dimensional Tidal Flow", Journal of Hydraulic Engineering, ASCE, Vol. 110, pp. 905-926, 1984.
  • 22. Elder, J.W., "The Dispersion of Marked Fluid in Turbulent Shear Flow", Journal of Fluid Mechanics, Vol. 5,pp. 544-560, 1959.
  • 23. Leonard, B.P., "A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation", Computer Methods in Applied Mechanics and Engineering 19. Elsevier, Science Publishers (North-Holland), pp. 59-98, 1979.
  • 24 Wu, Y. ve Falconer, R.A., "Refined Two-Dimensional Ultimate Quickest Scheme for Conservative Solute Transport Modeling", Proceedings of 3rd International Conference on Hydro-Science and Engineering, Cottbus, Germany, Vol. 1, pp. 1- 13. 1998.
  • 25 Lin, B. vc Falconer, R.A., "Modelling Sediment Fluxes in Estuarine Waters Using a Curvilinear Co-ordinate Grid System", Estuarine, Coastal and Shelf Science, Vol. 41, Academic Press Ltd., pp. 413-428, 1995.
  • 26 van Rijn, L. C. "Sediment Transport, Part I, Bed Load Transport", Journal of Hydraulic Engineering, Vol. 110, pp. 1431-1456, 1984.
  • 27 van Rijn, L. C., "Sediment Transport, Part II, Suspended Load Transport", Journal ofHydraulic Engineering, Vol. 110, pp. 1613-1641, 1984.
  • 28 Falconcr, R.A., "Research Developments of Flow and Water Quality Modelling in Coastal and Estuarine Waters", Proceedings of CIWEM National Symposium on Water Quality Modelling, Harrogate, Ashgate Publishing Company, Aldershot, pp. 81-109, 1992.
  • 29 Bettes, R., "Survey of Lightweight Sediments for Use in Mobile-Bed Physical Models", Movable Bed Physical Models, edited by Hsieh Wen Shen, NATO ASI Scries C, Mathematical and Physical Sciences, Vol. 312. Kluwer Academic Publishers, The Netherlands, pp. 115-123, 1990.