Ampirik Potansiyel Evapotranspirasyon Tahmin Yöntemlerinin Değerlendirilmesi: Uygulama Konya Kapalı Havzası

Evapotranspirasyon, hidrolojik çevrimde kritik bir rol oynar. Ancak bölgesel ve havza ölçeğinde miktarının tahmini zordur. Bilim insanları, bu konuyu incelemek amacıyla daha kolay ölçülmüş miktarlara dayanan tahminler sağlayan ampirik denklemler geliştirmişlerdir. Blaney-Criddle, Jensen-Haise, Makkink, Turc, Priestley-Taylor ve Hargreaves-Samani adlı altı ampirik yöntemin performansları, Konya Kapalı Havzası'ndaki beş istasyondan alınan günlük meteorolojik veriler kullanılarak FAO-56 Penman Monteith ile karşılaştırılmış ve tartışılmıştır. Turc, Hargreaves-Samani ve Priestley-Taylor yöntemlerinin FAO-56 Penman Monteith’e alternatif olarak ön plana çıktığı sonucuna varılmıştır. Ayrıca, sulama sezonu dikkate alındığında Turc, altı yöntemden en iyisi olmuştur. Sadece günlük sıcaklık verisine ihtiyaç duyan Hargreaves-Samani yönteminin bölge özelindeki performansının yadsınamayacak derecede başarılı olduğu vurgulanması gereken bir diğer noktadır.

The Assesment of Empirical Potential Evapotranspiration Methods: A Case Study of Konya Closed Basin

Evapotranspiration plays a critical role in hydrologic cycle. However, it is difficult to estimate its quantification at basin and arable land scales. Scientists have developed array of empirical equations that provide estimates of it based on more readily measured quantities in order to analyze this issue. The performance of six empirical methods namely Blaney-Criddle, Jensen-Haise, Makkink, Turc, Priestley-Taylor and Hargreaves-Samani were discussed comparing with FAO-56 Penman-Monteith method using daily meteorological data obtained from five stations in Konya Closed Basin. The results showed that Turc, Hargreaves-Samani ve Priestley-Taylor methods have come into prominence as an alternative to FAO-56 PM. Furthermore, Turc was best among the six methods when the irrigation season was considered. Another point to be emphasized is that the performance of Hargreaves-Samani method, which only needs daily temperature data, was undeniably successful in this region.

___

  • Katul, G.G., Oren, R., Manzoni, S., Higgins, C., Parlange, M.B., Evapotranspiration: A process Driving Mass Transport and Energy Exchange in the Soil-Plant-Atmosphere-Climate System. Rev. Geophys., 50, RG3002, 2012.
  • Dingman, S.L., Physical Hydrology, Long Grove, Waveland Press, Inc., 2008.
  • Akpolat, A., Mikrometeorolojik ve Lizimetre Yöntemleriyle Belirlenen Buğday Bitki Su Tüketimlerinin Karşılaştırılması. Master Tezi, Çukurova Üniversitesi, Adana, 2011.
  • Abdulkareem, J.H., Abdulkadir, A., Abdu, N., A Review of Different Types of Lysimeter Used in Solute Transport Studies. International Journal of Plant & Soil Science 8(3), 1-14, 2015.
  • Allen, R.G, Periera, L.S, Raes, D., Smith, M., Crop Evapotranspiration. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the UN, Rome, Italy, 1998.
  • Lingling, Z., Jun, X., Chong-yu, X., Zhonggen, W., Leszek, S., Cangrui, L., Evapotranspiration Estimation Methods in Hydrological Models, J. Geogr. Sci., 23(2), 359-369, 2013.
  • Alexandris, S., Stricevic, R., Petkovic, S., Comparative Analysis of Reference Evapotranspiration from the Surface of Rainfed Grass in central Serbia, Calculated by Six Empirical Methods against the Penman – Monteith Formula. European Water, 21/22, 17-28, 2008.
  • Monteith, J.L., Evaporation and the Environment. XIX th Symposium Society for Experimental Biology, Swansea, Cambridge University, Cambridge, England, 205–234, 1965.
  • Priestley, C.H.B, Taylor, R.J., On the Assessment of the Surface Heat Flux and Evaporation using Large-Scale Parameters. Monthly Weather Review, 100, 81–92, 1972.
  • Subedi, A., Chavez, J.L., Crop Evapotranspiration (ET) Estimation Models: A Review and Discussion of the Applicability and Limitations of ET Methods. Journal of Agricultural Science, 7 (6), 50-68, 2015.
  • Beyazgül, M., Kayam, Y., Engelsman, F., Estimation Methods for Crop Water Requirements in the Gediz Basin of Western Turkey. Journal of Hydrology, 229, 19-26, 2000.
  • Şahin, Ü., Angın, İ., Anapalı, Ö., Evaluation of Reference Evapotranspiration Calculation Methods Applied to the Climatic Conditions of Turkey. J Hydrol. Hydromech., 52 (2), 125-133, 2004.
  • Lu, J., Sun, G., McNulty, S.G., Amatya, D.M., A Comparison of Six Potential Evapotranspiration Methods for Regional use in the Southeastern United States. JAWRA, 41(3), 621-633, 2005.
  • Tabari, H., Evaluation of Reference Crop Evapotranspiration Equations in Various Climates. Water Resour. Manag., 24, 2311–2337, 2010.
  • Tukimat, N.N.A., Harun, S., Shahid, S., Comparison of Different Methods in Estimating Potential Evapotranspiration at Muda Irrigation Scheme of Malaysia. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 113 (1), 77–85, 2012.
  • Fisher, D.K., Pringle III, H.C., Evaluation of Alternative Methods for Estimating Reference Evapotranspiration. Agricultural Sciences, 4(8A), 51-60, 2013.
  • Efthimiou, N., Alexandris, S., Karavitis, C., Mamassis, N., Comparative Analysis of Reference Evapotranspiration Estimation between Various Methods and the FAO56 Penman - Monteith Procedure. European Water, 42, 19-34, 2013.
  • Zhang, K., Kimball, J.S., Nemani, R.R., Running, S.W., A Continuous Satellite- Derived Global Record of Land Surface Evapotranspiration from 1983 to 2006. Water Resour. Res., 46, W09522, 2010.
  • Aksu, H., Arıkan, A., Satellite-based Estimation of Actual Evapotranspiration in the Büyük Menderes Basin, Turkey. Hydrology Research, 48(2), 559-570, 2017.
  • Peng, J., Loew, A., Chen, X., Ma, Y., Su, Z., Comparison of Satellite-Based Evapotranspiration Estimates over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 20, 3167-3182, 2016.
  • Citakoglu, H., Cobaner, M., Haktanir, T., Kisi, O., Estimation of Monthly Mean Reference Evapotranspiration in Turkey. Water Resour. Management, 28, 99–113, 2014.
  • Falamarzi, Y., Palizdan, N., Huang, Y.F., Lee, T.S., Estimating Evapotranspiration from Temperature and Wind Speed Data using Artificial and Wavelet Neural Networks (WNNs). Agricultural Water Management, 140 (C), 26-36, 2014.
  • Partal, T., Comparison of Wavelet Based Hybrid Models for Daily Evapotranspiration Estimation using Meteorological Data. KSCE Journal of Civil Engineering, 20 (5), 2050-2058, 2016.
  • Yılmaz, S., Havza Koruma Eylem Planlarının Hazırlanması Projesi Konya Kapalı Havzası, 5098115-ÇE.10.49, TÜBİTAK Marmara Araştırma Merkezi Çevre Enstitüsü, 2010.
  • Berke, M.Ö., Dıvrak, B.B., Sarısoy, H.D., Konya’da Suyun Bugünü Raporu,. WWF Türkiye, 2014.
  • Blaney, H.F., Criddle, W.D., Determining Consumptive Use and Irrigation Water Requirements. Agricultural Research Service, Tech. Bull., 1275, 1962.
  • Jensen, M.E., Historical Evaluation of ET Estimating Methods. CSU/ARS Evapotranspiration Workshop, Fort Collins, CO, 12 March 2010.
  • Penman, H.L., Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings, Royal Society of London Ser. A, 193, 120–145, 1948.
  • Makkink, G.F., Testing the Penman Formula by means of Lysimeters. J Inst. Water Eng. 11(3), 277–288, 1957.
  • Turc, L., Water Requirements Assessment of Irrigation, Potential Evapotranspiration: Simplified and updated Climatic Formula. Annales Agronomiques, 12, 13-49, 1961.
  • Dodds, P.E., Meyer, W.S., Barton, A., A Review of Methods to Estimate Irrigated Reference Crop Evapotranspiration Across Australia. CRC for Irrigation Futures Technical Report No. 04/05. 2005.
  • Morton, F.I., Operational Estimates of Areal Evapotranspiration and Their Significance to the Science and Practice of Hydrology. Journal of Hydrology, 66, 1-76, 1983.
  • Hargreaves, G.H., Moisture Availability and Crop Production. Transaction of the ASAE, 18(5), 980–984, 1975.
  • Hargreaves, G.H., World Water for Agriculture. Agency for International Development, 177, 1977.
  • Hargreaves, G.H., Samani, Z.A., Estimation of Potential Evapotranspiration. J. Irrig. Drain. Eng., 108 (3), 225–230, 1982.
  • Hargreaves, G.L., Water Requirements and Agricultural Benefits for the Senegal River Basin. Master Thesis, Utah State University, Logan, Utah, 1983.
  • Hargreaves, G.H., Samani, Z.A., Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric., 1(2), 96-99, 1985.
  • Hargreaves, G.H., Allen, R.G., History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng., 129(1), 53-63, 2003.
  • Wang, Y.M., Traore, S., Kerh, T., Determination of a Reference Model for Estimating Evapotranspiration in Burkina Faso. In Proceedings of the 6th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, 16-19 Feb. 2007.
  • George, B.A., Reddy, B.R.S., Raghuwanshi, N. S., Wallender, W.W., Decision Support System for Estimating Reference Evapotranspiration. J Irrig. Drain. Eng., 128 (1), 1-10, 2002a.
  • Heydari, M.M., Tajamoli, A., Ghoreishi, S.H., Darbe-Esfahani, M.K., Gilasi, H., Evaluation and Calibration of Blaney- Criddle Equation for Estimating Reference Evapotranspiration in Semiarid and Arid Regions. Environ Earth Sci., 74, 4053-4063, 2015.
  • Lopez-Urrea, R., De Santo Olalla, F. M., Fabeiro, C., Moratalla, A., An Evaluation of Two Hourly Reference Evapotranspiration Equations for Semi-arid Conditions. Agric. Water Manag., 86(3), 277-282, 2006.