Reference Evapotranspiration Estimation With kNN and ANN Models Using Different Climate Input Combinations in the Semi-arid Environment

Reference Evapotranspiration Estimation With kNN and ANN Models Using Different Climate Input Combinations in the Semi-arid Environment

The absolute prediction of reference evapotranspiration (ETo) is an important issue for global water balance. Present study demonstrated the performance of k-Nearest Neighbour (kNN) and Artificial Neural Network (ANN) models for prediction of daily ETo using four combinations of climatic data. The kNN and ANN models were studied four combinations of daily climate data during 1996-2015 in the Middle Anatolia region. The findings of ETo estimation with kNN and ANN models were classed with the FAO Penman Monteith equation. The outcomes of ETo values demonstrated that the kNN had higher performances than the ANN in all combinations. The statistical indicators of the kNN model showed ETo values with MSE, RMSE, MAE, NSE and R2 ranging from 0.541-0.031 mm day-1, 0.735-0.175 mm day-1, 0.547-0.124 mm day-1, 0.937-0.997 and 0.900-0.994 in the testing subset. Thus, the kNN can be used for the prediction of reference evapotranspiration with full and limited input meteorological data.

___

  • Ali M H & Shui L T (2009). Potential evapotranspiration model for Muda irrigation project, Malaysia. Water Resources Management 23: 57- 69 DOI: 10.1007/s11269-008-9264-6
  • Allen R G, Pereira L S, Raes D & Smith M (1998). Crop Evapotranspiration: Guide Lines for Computing Crop Evapotranspiration. Rome, Italy: FAO Irrigation and Drainage Paper No. 56
  • Antonopoulos V S & Antonopoulos A V (2017). Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate. Computers and Electronics in Agriculture 132: 86-96 DOI: 10.1016/j.compag.2016.11.011
  • Citakoglu H, Cobaner M, Haktanir T & Kisi O (2014). Estimation of monthly mean reference evapotranspiration in Turkey. Water Resources Management 28: 99-113 DOI 10.1007/s11269-013-0474-1
  • Cover T M & Hart P E (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1): 21-27
  • Fan J, Yue W, Wu L, Zhang F, Cai H & Wang X (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology 263: 225-241 DOI: 10.1016/j.agrformet.2018.08.019
  • Feng F & Tian J (2020). Estimating potential evapotranspiration based on self-optimizing nearest neighbor algorithms: a case study in aridsemiarid environments, Northwest of China. Environmental Science and Pollution Research DOI: 10.1007/s11356-019-06597-7
  • Feng Y, Cui N, Zhoa L, Hu X & Gong D (2016). Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. Journal of Hydrology 536: 376-383 DOI: 10.1016/j.jhydrol.2016.02.053
  • Feng Y, Cui N, Gong D, Zhang Q & Zhoa L (2017). Evaluation of random forest and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management 193: 163-173 DOI: 10.1016/j.agwat.2017.08.003
  • Ferreira L B, da Cunha F F, de Oliveira R A & Fernandes Filho E I (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – a new approach. Journal of Hydrology 572: 556-570 DOI: 10.1016/j.jhydrol.2019.03.028
  • Gocić M, Motamedi S, Shamshirband S, Petković D, Ch S, Hashim R & Arif M (2015). Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture 113:164-173 DOI: 10.1016/j.compag.2015.02.010
  • Hargreaves G H & Samani Z A (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1: 96-99 DOI: 10.13031/2013.26773
  • Khoob A R (2008). Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrigation Science 26: 253-289 DOI: 10.1007/s00271-007-0090-z
  • Kisi O (2016). Modelling reference evapotranspiration using three different heuristic regression approaches. Agricultural Water Management 169: 162-172 DOI: 10.1016/j.agwat.2016.02.026
  • Kisi O & Çimen M (2009). Evapotranspiration modelling using support vector machines. Hydrological Sciences Journal 54: 918-928 DOI: 10.1623/hysj.54.5.918
  • Kişi O (2015). Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology 528: 312-320 DOI: 10.1016/j.jhydrol.2015.06.052
  • Kottek M, Grieser J, Beck C, Rudolf B & Rubel F (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259-263 DOI: 10.1127/0941-2948/2006/0130
  • Kumar M, Raghuwanshi N S & Singh R (2011). Artificial neural networks approach in evapotranspiration modeling: a review. Irrigation Science 29(1): 11-25 DOI: 10.1007/s00271-010-0230-8
  • Landeras G, Ortiz-Barredo A & López J J (2008). Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural Water Management 95: 553-565 DOI: 10.1016/j.agwat.2007.12.011
  • Lopez-Urrea R, Martin de Santa Olalla F, Fabeiro C & Moratalla A (2006). Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agricultural Water Management 85: 15-26 DOI: 10.1016/j.agwat.2006.03.014
  • Pereira L S, Allen R G, Smith M & Raes D (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management 147: 4-20 DOI: 10.1016/j.agwat.2014.07.031
  • Priestley C H B & Taylor R J (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100: 81-92 DOI: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • Tabari H, Marofi S, Aeini A, Talaee P H & Mohammadi K (2012). Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology 151: 128-136 DOI: 10.1016/j.agrformet.2010.09.009
  • Tangune B F & Escobedo J F (2018). Reference evapotranspiration in São Paulo State: empirical methods and machine learning techniques. Water Resources and Environmental Engineering 10: 33-44 DOI: 10.5897/IJWREE2018.0772
  • Torres A F, Walker W R & McKee M (2011). Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agricultural Water Management 98: 553-562 DOI: 10.1016/j.agwat.2010.10.012
  • Trabert W (1896). Neue beobachtungen {ü}ber verdampfungsgeschwindigkeiten. Meteorologische Zeitschrift 13: 261-263
  • Traore S, Wang Y-M & Kerh T (2010). Artificial neural network for modelling reference evapotranspiration complex process in SudanoSahelian zone. Agricultural Water Management 97: 707-714 DOI: 10.1016/j.agwat.2010.01.002
  • Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan G J, Ng A, Liu B, Yu P S, Zhou Z H, Steinbach M, Hand D J & Steinberg D (2008). Top 10 Algorithms in Data Mining. Knowledge and Information Systems 14: 1-37 DOI: 10.1007/s10115-007-0114-2
  • Yamaç S S & Todorovic M (2020). Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agricultural Water Management 228: 105875 DOI: 10.1016/j.agwat.2019.105875
  • Yamaç S S, Şeker C & Negiş H (2020). Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area. Agricultural Water Management 234: 106121 DOI: 10.1016/j.agwat.2020.106121