Denizlerde karbon dinamiği

Günümüzde, dünyamızın sahip olduğu karbon dinamiği pekçok bilim adamın ilgisini çekmektedir. Özellikle, karasal biyokütlenin yakılması ve zarar görmesi ve ayrıca insanların fosil yakıttan yakarak çevreye CÖ2 vermeleri bu konuyla ilgili çalışmaları arttırmıştır. Son yıllarda yeryüzündeki karbon dinamiği modellerinin formüle edilmesi üzerine pekçok kitap ve yayın yazılmıştır. Bu konuda yapılan modellerde okyanuslar çok önemli bir yer tutmaktadır. Fosil yakıtlarının yanması sonucu yaklaşık 1.6x10" ton karbon atmosfere ulaşmaktadır. Günümüzde bu oran 5x109 ton /yıl civarındadır. Kimyasal oşinograflar bu oluşan karbonun %50'sinin atmosferde, %40 ise okyanuslardaki CO2 havzalarında bulunduğuna inanırlar. Bu derlemede, tüm canlıların temelini oluşturan karbonun denizel ortamlardaki dinamiği açıklanmıştır.

Carbon dynamic in the sea

Carbon dynamic in the sea. The carbon dynamic of the earth is great concern to many scientist today. Especially, those involved in the study of the implications to the environment of man-mobilized carbon dioxide through fossil fuel combustion and through the destruction and burning of terrestrial biomass. There are several recent volumes and many recent papers dedicated to formulation of models of the earth carbon dynamic. The oceans play a significant role in all such models. Approximately, 1.60.10" tons of carbon have been released to the atmosphere by the burning of fossil fuel; the present release rate is about 5.109 tons/year. About 50% of the carbon released is believed to be present in the atmosphere and 40% is believed to be in the oceanic COapool by chemical oceanographers. In this collection, we explained the dynamic of the carbon which is based of all organisms in the marine environment.

___

Brown, J., Colling, A., Park, D., Phillips, J., Rothery, D., Wright, J. 1992. Seawater: Its Composition, Properties and Behaviour. (Ed. G. Bearman)

Büyükışık, B., 1998. Kimyasal Oseanografi Ders Notları.

Duursma, E. K., Boisson, M. P. R. M. 1994. Global Oceanic and Atmospheric Oxygen Stability Considered in Relation to the Carbon Cycle and to Different Time Scales. Oceanologica Acta, Vol. 17, No:2.

Eswaran H. Wanden Berg E., Reich P. 1993. Organic Carbon in Soils of the World. Soil Science Society of American Journal, 57, 192-194.

Liss, P.S. Crane, A.J. 1983. Man-Made Carbon Dioxide and Climatic Change Geo Books, Norwich, Uk. 127 pp.

Potter C.S., Randerson J.T., Field C.B. Matson P.A., Vitousek P.M., MooneyH.A. Klooster S.A. 1993. Terrestrial ecosystem production a process model based on global satellite and surface data, Global Biogeochemical Cycles, 7, 811-841.

Martin, D.F. 1970. Marine Chemistry, Vol 1-2, Marcel Dekker Inc. New York.

Seiler, W. Grutzen, P.J. 1980. Estimates of Gross and Net Fluxes of Carbon Between the Biosphere and the Atmosphere From Biomass Burning. Climatic Change, Vol.2, p.207-47.

Siegenthaler U., Sarmiento J.L. 1993. Atmospheric carbondioxide and ocean, Nature, 365, 119-125.

Schimel, D. S. 1995. Terrestrial Ecosystems and the Carbon Cycle. Global Change Biology, 1, 77-91.

Takahashi, T. 1989. Only half as much CO2 as expeced from industrial emissions is accumulting in the atmosphere. Could the oceans be storehuse for the missing gas? Oceanus Volume 32, Number 2, 22-29.

Takahashi, T., Tans, P. P. Fung, I. 1992. Balancing the Budget. Oceanus Volume 35, Number 1, 18-28.

UNESCO. 1980. The Carbon Budget of the Oceans. UNESCO Report of SCOR Working Group 62. 16 pp. UNESCO, Paris.

Whittaker, R.H; Likens, G.E. 1973. Carbon in the biota, In: G.M. Woodwell and E.V. Pecon (eds) Carbon in the biosphere. AEC. Symp: Ser.30, Sptingfield, Virginia, National Technical Information Service, U.S. Department of Commmerce

Wong, C.S. 1978. Atmosphericinput of carbon dioxode from burning wood. Science Vol.200, no. 4338, p.197-200.