Some remarks for a certain class of holomorphic functions at the boundary of the unit disc
Some remarks for a certain class of holomorphic functions at the boundary of the unit disc
We consider a boundary version of the Schwarz Lemma on a certain class which is
___
- H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly, 117 (2010), 770-785.
- D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), 3275-3278.
- V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), 3623-3629.
- V. N. Dubinin, Bounded holomorphic functions covering no concentric circles, J. Math. Sci. 207 (2015), 825-831.
- G. M. Golusin, Geometric Theory of Functions of Complex Variable [inRussian], 2nd edn., Moscow 1966.
- I. S. Jack, Functions starlike and convex of order alfa , J. London Math. Soc. 3(1971), 469-474.
- M. Jeong, The Schwarz lemma and its applications at a boundary point, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 275-284.
- D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661-676.
- X. Tang and T. Liu, The Schwarz Lemma at the Boundary of the Egg Domain p1, p2 B in Cn , Canad. Math. Bull. 58 (2015), 381-392.
- X. Tang, T. Liu and J. Lu, Schwarz lemma at the boundary of the unit polydisk in Cn , Sci. China Math. 58 (2015), 1-14.
- M. Mateljević, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI: 10.13140/RG.2.2.34140.90249, In press.
- R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), 3513–3517.
- T. Aliyev Azeroğlu and B. N. Örnek, A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations 58 (2013), 571–577.
- B. N. Örnek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), 2053–2059.
- B. N. Örnek, Estimate for p-valently Functions at the Boundary, Bulletin of International Mathematical Virtual Institute, 7 (2017), 327-338.
- Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
- M. Elin, F. Jacobzon, M. Levenshtein, D. Shoikhet, The Schwarz lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and its Applications. Springer International Publishing, (2014), 135-230.