Karpal Tünel Sendromu Temelli Elektronik Sağlık Kayıt Sisteminin Geliştirilmesi

Karpal tünel sendromunun (KTS) tanısında, fiziksel muayene, klinik testler ve elektrofizyolojik yöntemler kullanılmaktadır. Fakat pratikte uygulanan klinik ve elektrofizyolojik testlerde klinik ve laboratuvarlar için bir standart bulunmamaktadır. Bundan dolayı Elektronik Sağlık Kaydı (ESK) sistemlerinde, veri parçalanması veya uyumsuzluklar meydana gelebilmektedir. Ayrıca bu ESK sistemlerinde, ikincil kullanım ve farklı biyomedikal araştırma hedefleri dikkate alınmamakta ve rutin dökümantasyon işlemi sırasında, eksik, hatalı, tutarsız veri girişleri ve hatalı kodlamaları yapılabilmektedir. Bu çalışma ile, KTS tanısında farklı klinik ve merkezlerce de kullanılabilecek bir ESK sisteminin geliştirilmesi ve böylelikle standartlaştırılmış, kaliteli, öngörücü, önleyici, kişiselleştirilmiş ve gerçek zamanlı katılımcı bir KTS biyomedikal veri ambarının oluşturulması hedeflenmiştir. KTS tabanlı ESK sistemi, Microsoft Visual Studio C# programlama dili kullanılarak geliştirilmiştir. Ayrıca; yeni hasta kaydı esnasında KTS ön tanısı için WEKA programı kullanılarak veri madenciliği yöntemine dayalı bir klinik karar destek sistemi (KKDS) ile desteklenmiştir. Geliştirilen ESK sistemi, klinik ve elektrofizyoloijk test sonuçlarının yanısıra hassas tıp yaklaşımı çerçevesinde genetik ve çevresel varyantların da tek bir veri tabanına entegre edilmesine imkan tanımakta ve ikincil kullanım amacıyla geniş ölçekli doğru eksiksiz ve aynı standartta bir veri ambarı sunabilmektedir. 

The Fuzzy Logic Modeling of Solar Air Heater Having Conical Springs Attached on the Absorber Plate

Physical examination, clinical tests and electrophysiological methods are used in the diagnosis of carpal tunnel syndrome (CTS). However, in practice there are no standard clinical and electrophysiological tests for clinics and laboratories. Therefore, data fragmentation or incompatibilities may occur in Electronic Health Record (EHR) systems. Furthermore, secondary use and different biomedical research targets are not considered in these EHR systems. During routine documentation, incomplete, incorrect, inconsistent data entry and incorrect coding can be done. This study aimed to develop an EHR system that could be used in different clinics and centers in diagnosis of CTS, thus creating a standardized, high quality, predictive, preventive, personalized and real-time participatory CTS biomedical data warehouse. The CTS-based EHR system was developed using Microsoft Visual Studio C # programming language. Also during a new patient record, the system was supported by a clinical decision support system (CDSS) based on the data mining methods using WEKA program for pre-diagnosis of the CTS. This EHR system also allows clinical and electrophysiological test results as well as genetic and environmental variants to be integrated into a single database within the framework of precision medicine approachment. In addition, this system can provide a large scale accurate and complete data warehouse for secondary use purposes.

___

  • [1] Atroshi I., Gummesson C, Johnsson R., Ornstein E., Ranstam J. Rosen I., “Prevalence of carpal tunnel syndrome in a general population”, JAMA, 282: 153-8, (1999)
  • [2] Nordstrom D.L., DeStefano F., Vierkant R.A., Layde P.M., “Incidence of diagnosed carpal tunnel syndrome in a general population”, Epidemiology, 9: 342-5, (1998)
  • [3] Ghavanini M.R., Haghighat M., “Carpal tunnel syndrome: reappraisal of five clinical tests”, Electromyogr Clin Neurophysiol, 38: 437-41, (1998)
  • [4] Gellman H., Gelberman R.H., Tan A.M., Botte M.J., “Carpal tunnel syndrome. An evaluation of the provocative diagnostic tests”, J Bone Joint Surg Am, 68: 735-7, (1986)
  • [5] Tetro A.M., Evanoff B.A., Hollstien S.B., Gelberman R.H., “A new provocative test for carpal tunnel syndrome. Assessment of wrist flexion and nerve compression” J Bone Joint Surg Br, 80: 493-8, (1998)
  • [6] Levine D.W., Simmons B.P., Koris M.J. et al., “A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome”, J Bone Joint Surg Am, 75:1585–92, (1993)
  • [7] Jablecki C.K., Andary M.T., So Y.T., Wilkins D.E., Williams F.H., “Literature review of the usefulness of nerve conduction studies and electromyography for the evaluation of patients with carpal tunnel syndrome”, Muscle Nerve, 16:1392-1414, (1993)
  • [8] Aminoff M.J., “Electromyography in Clinical Practice 2th ed”, Churchill Livingstone Inc, USA, (1987)
  • [9] Bodofsky E.B., “Diagnosing mild carpal tunnel syndrome with interpolation”, Electromyogr Clin Neurophysiol, 44:379-383, (2004)
  • [10] Kohara N., “Clinical and Electrophysiological Findings in Carpal Tunnel Syndrome”, Brain Nerve, 59:1229-1238, (2007)
  • [11] Shortliff E.H. and Climine J.J., “Biomedıcal Informatics: Computer Applications In Health Care & Bıomedicine”, Springer, Newyok USA, (2006)
  • [12] Gubbia J., Buyya R., Marusica S., Palaniswami M., “Internet of Things (IoT): A vision, architectural elements, and future directions”, Future Generation Computer Systems, 29;1645-1660, (2013)
  • [13] Hanauer D.A., Ramakrishnan N., “Modeling temporal relationships in large scale clinical associations”, J Am Med Inform Assoc, 20:332-41, (2013)
  • [14] Mullins I.M., Siadaty M.S., Lyman J., et al., “Data mining and clinical data repositories: insights from a 667,000 patient data set”, Comput Biol Med, 36:1351-77, (2006)
  • [15] Wright A., Chen E.S., Maloney F.L., “An automated technique for identifying associations between medications, laboratory results and problems”, J Biomed Inform, 43:891-901, (2010)
  • [16] Hoffman S., and Podgurski A., “Big Bad Data: Law, Public Health, and Biomedical Databases”, J.L. Med. & Ethıcs, 41:56-60, (2013)
  • [17] Jensen P.B., Jensen L.J., Brunak S., “Mining electronic health records: towards better research applications and clinical care”, Nat Rev Genet, 13:395-405, (2012)
  • [18] Ramakrishnan N., Hanauer D., Keller B., “Mining Electronic Health Records”, Computer, 43:77-81, (2010)
  • [19] Kalra D., Musen M., Smıth B., Ceusters W., “Argos Policy Brief on Semantic Interoperability”, Studies in health technology and informatics, 170:1-15, (2011)
  • [20] Phan J.H., Quo C.F., Cheng C., Wang M.D., “Multiscale integration of omic, imaging, and clinical data in biomedical informatics”, IEEE Rev Biomed Eng 5:74-87, (2012)
  • [21] Talan M.I., Canal M.R., Zinnuroğlu M., Alcan V., “Tıbbi Veri Ambarı Kullanarak Veri Madenciliği Sınıflandırma Algoritmalarının Karşılaştırılması”, 1st International Turkish World Engineering and Science Congress, Antalya, 7-10, (2017)
  • [22] Hakim A.J., Cherkas L., El Zayat S., MacGregor A.J., Spector T.D., “The genetic contribution to carpal tunnel syndrome in women: a twin study”, Spector Arthritis Rheum, 47:275-279, (2002)
  • [23] Lozano-Calderón S., Anthony S., Ring D., “The quality and strength of evidence for etiology: example of carpal tunnel syndrome”, J Hand Surg Am, 33:525-538, (2008)
  • [24] Bland J.D.P., “Carpal tunnel syndrome”, Curr Opin in Int Med, 4:578-82, (2005)
  • [25] Becker J., Nora D.B., Gomes I., Stringari F.F., Seitensus R., Panosso J.S., “An evaluation of gender, obesity, age and diabetes mellitus as risk factors for carpal tunnel syndrome”, Clin Neurophysiol, 113:1429-34, (2002)
  • [26] Lam N., Thurston A., “Association of obesity, gender, age and occupation with carpal tunnel syndrome”, Aust N Z J Surg, 68:190-3, (1998)
  • [27] Reinstein L., “Hand dominance in carpal tunnel syndrome”, Arch Phys Med Rehabil, 62:202-3, (1981)
  • [28] İnternet: The Precision Medicine Initiative, https://obamawhitehouse.archives.gov/node/333101 Son Erişim Tarihi: 15.08.2018.
  • [29] Jameson J.L., Longo D.L., “Precision Medicine-Personalized, Problematic, and Promising”, Obstetrical & Gynecological Survey, 70:612-614, (2015)
  • [30] Weiskopf N.G., Hripcsak G., Swaminathan S., Weng C., “Defining and measuring completeness of electronic health records for secondary use”, J Biomed Inform, 46:830-6, (2013)
  • [31] Chan K.S., Fowles J.B., Weiner J.P., “Electronic Health Records and the Reliability and validity of quality measures: a review of the literature”, Med Care Res Rev, 67:503-27, (2010)
  • [32] Sullivan P., Goldmann D., “The promise of comparative effectiveness research”, JAMA, 305:400-1, (2011)
  • [33] Fernandes L., O’Connor M., Weaver V., “Big data, bigger outcomes: Healthcare is embracing the big data movement, hoping to revolutionize HIM by distilling vast collection of data for specific analysis”, J Ahıma, 83:38-43, (2012)
  • [34] Harper E.M., “The economic value of health care data”, Nurs Adm Q, 37:105-8, (2013)
  • [35] Kulynych J. and Greely H.T., “Clinical genomics, big data, and electronic medical records: reconciling patient rights with research when privacy and science collide”, J Law Biosci, 4:94-132, (2017)
  • [36] Kayaalp M., “Patient Privacy in the Era of Big Data”, Balkan Med J, 35:8-17, (2018)
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: 6
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Kablosuz Algılayıcı Ağlarda Küme Başı Kapsama Alanının Farklı Ağ Boyutları ve Düğüm Sayıları Altında Ağ Yaşam Süresine Etkisi

İpek ABASIKELEŞ TURGUT

Preparation of Chitosan and Glycol Chitosan Coated Magnetic Nanoparticles Loaded with Carboplatin as Anticancer Drug

Ceren ATİLA DİNÇER, Ali Mert ERDEK, Ayşe KARAKEÇİLİ, Nuray YILDIZ

Hareketli Hedefli - Heterojen Filolu İHA Rotalama Problemi İçin Yeni Bir Çözüm Yaklaşımı

Ukbe Üsame UÇAR, Selçuk Kürşat İŞLEYEN

Çoklu Robotlarda İşbirlikli Davranışların Karşılaştırılması ve Bulanık Mantık Yaklaşımı

Ahmet Çağdaş SEÇKİN, Ahmet ÖZEK, CEYHUN KARPUZ

Yenilenebilir Enerji Kullanımındaki Göreceli Etkinliklerin Veri Zarflama Analizi ile Değerlendirilmesi: Türkiye ve Yedi Avrupa Ülkesi Örneği

Zühre AYDIN YENİOĞLU, Vildan ATEŞ

Geleneksel Yöntemle Açılan Karayolu Tünellerinde Çalışanların Gürültü Maruziyetlerinin Değerlendirilmesi

DENİZ AKBAY, Raşit ALTINDAĞ, NAZMİ ŞENGÜN

Functionalized Multi-Walled Carbon Nanotubes and Micro Cellulose Reinforced Poly (Vinyl Alcohol) Hybrid Composite Films: Characterization and Reprocessing Performance

Ümit HÜNER

Correction: A Fuzzy MCDM Approach to Determine the Most Influential Logistic Factors

Mehmet Burak ŞENOL, Aylin ADEM, Metin DAĞDEVİREN

Comparison of the Numerical Models for the Temperature Distributions of Non-Premixed Swirling Methane Flame

Güven TUNÇ, İLKER YILMAZ

Denge Kontrol Sisteminin LQR ile Gerçek Zamanlı Durum Geri Beslemeli Kontrolü

Selçuk KİZİR