Novel and promising approaches in COVID-19 treatment

Novel and promising approaches in COVID-19 treatment

___

  • [1] Khalilov R, Hosainzadegan M, Eftekhari A, Nasibova A, Hasanzadeh A, Vahedi P, Hosain Zadegan H. Overview of the environmental distribution, resistance, mortality, and genetic diversity of new coronavirus (COVID-19). Adv Biol Earth Sci. 2020; 5: 7-12.
  • [2] Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020; 20(5): 533-534.
  • [3] Khalilov R, Hosainzadegan M, Eftekhari A, Hasanzadeh A, Zadegan HH, Nasibova A. Necessity of different countries to deal with similar phenomena of COVID-19 coronavirus. Adv Biol Earth Sci. 2020;5:5-6.
  • [4] Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gong Q, Liao J, Yang H, Hou W, Zhang Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020; 395(10226): 809-815.
  • [5] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033- 1034.
  • [6] Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, Zhang LJ. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology. 2020; 296(2): E15-E25.
  • [7] Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020; 92(6): 568-576.
  • [8] Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020; 395(10228): 931-4.
  • [9] Morens DM, Taubenberger JK, Fauci AS. The persistent legacy of the 1918 influenza virus. N Engl J Med. 2009; 361(3): 225-9.
  • [10] Valette M, Allard JP, Aymard M, Millet V. Susceptibilities to rimantadine of influenza A/H1N1 and A/H3N2 viruses isolated during the epidemics of 1988 to 1989 and 1989 to 1990. Antimicrob Agents Chemother. 1993; 37(10): 2239-40.
  • [11] Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA. Pathogenesis and transmission of swineorigin 2009 A(H1N1) influenza virus in ferrets. Science. 2009; 325(5939): 481-3.
  • [12] Claas EC, de Jong JC, van Beek R, Rimmelzwaan GF, Osterhaus AD. Human influenza virus A/HongKong/156/97 (H5N1) infection. Vaccine. 1998; 16(9-10): 977-8.
  • [13] Reid AH, Fanning TG, Janczewski TA, Taubenberger JK. Characterization of the 1918 "Spanish" influenza virus neuraminidase gene. Proc Natl Acad Sci U S A. 2000; 97(12): 6785-6790.
  • [14] Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005; 79(23): 14614-21.
  • [15] Jiang M, Xue Z, Li Y, Liu H, Zeng S, Hao J. A soft X-ray activated lanthanide scintillator for controllable NO release and gas-sensitized cancer therapy. Nanoscale Horiz. 2020; 5, 268.
  • [16] Ahmadian E, Pennefather PS, Eftekhari A, Heidari R, Eghbal MA. Role of renin-angiotensin system in liver diseases: an outline on the potential therapeutic points of intervention. Expert Rev Gastroenterol Hepatol. 2016;10(11):1279-88.
  • [17] Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010; 128(1): 119-28.
  • [18] Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARSCoV-2 Spike Glycoprotein. Cell. 2020; 181(2): 281-292.e6.
  • [19] Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW, Barnard D, Pöhlmann S, McKerrow JH, Renslo AR, Simmons G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015; 116: 76- 84.
  • [20] Pillay TS. Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. J Clin Pathol. 2020; 73(7):366-9.
  • [21] Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020; 30(4): 343- 355.
  • [22] Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020; 109: 102433.
  • [23] Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Tissot Dupont H, Honoré S, Colson P, Chabrière E, La Scola B, Rolain JM, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 56(1): 105949.
  • [24] Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, Shen C, Li X, Peng L, Huang D, Zhang J, Zhang S, Wang F, Liu J, Chen L, Chen S, Wang Z, Zhang Z, Cao R, Zhong W, Liu Y, Liu L. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (Beijing). 2020; 6(10): 1192- 1198.
  • [25] Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, Daßler-Plenker J, Guerci P, Huynh C, Knight JS, Loda M, Looney MR, McAllister F, Rayes R, Renaud S, Rousseau S, Salvatore S, Schwartz RE, Spicer JD, Yost CC, Weber A, Zuo Y, Egeblad M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 217(6): e20200652.
  • [26] Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020; 6(3): 427-433.
  • [27] Focosi D, Anderson AO, Tang JW, Tuccori M. Convalescent Plasma Therapy for COVID-19: State of the Art. Clin Microbiol Rev. 2020; 33(4): e00072-20.
  • [28] Roback JD, Guarner J. Convalescent Plasma to Treat COVID-19: Possibilities and Challenges. JAMA. 2020; 323(16): 1561-1562.
  • [29] Zhao Q, He Y. Challenges of Convalescent Plasma Therapy on COVID-19. J Clin Virol. 2020; 127: 104358.
  • [30] Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020; 323(16): 1582-1589.
  • [31] Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, Mourão MPG, Brito-Sousa JD, Baía-da-Silva D, Guerra MVF, Hajjar LA, Pinto RC, Balieiro AAS, Pacheco AGF, Santos JDO Jr, Naveca FG, Xavier MS, Siqueira AM, Schwarzbold A, Croda J, Nogueira ML, Romero GAS, Bassat Q, Fontes CJ, Albuquerque BC, Daniel-Ribeiro CT, Monteiro WM, Lacerda MVG; CloroCovid-19 Team. Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) Infection: A Randomized Clinical Trial. JAMA Netw Open. 2020; 3(4): e208857.
  • [32] Millán-Oñate J, Millan W, Mendoza LA, Sánchez CG, Fernandez-Suarez H, Bonilla-Aldana DK, Rodríguez-Morales AJ. Successful recovery of COVID-19 pneumonia in a patient from Colombia after receiving chloroquine and clarithromycin. Ann Clin Microbiol Antimicrob. 2020; 19(1): 16.
  • [33] Hantoushzadeh S, Norooznezhad AH. Possible Cause of Inflammatory Storm and Septic Shock in Patients Diagnosed with (COVID-19). Arch Med Res. 2020; 51(4): 347-348.
  • [34] Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M, Resta M, Falco M, Albano G, Menicanti L. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020; 18(7): 1747-1751.
  • [35] Wang J. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study. J Chem Inf Model. 2020; 60(6): 3277-3286.
  • [36] Atluri S, Manchikanti L, Hirsch JA. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Physician. 2020; 23(2): E71-E83.
  • [37] Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Front Immunol. 2020; 11: 1563.
  • [38] Riedel RN, Pérez-Pérez A, Sánchez-Margalet V, Varone CL, Maymó JL. Stem cells and COVID-19: are the human amniotic cells a new hope for therapies against the SARS-CoV-2 virus?. Stem Cell Res Ther. 2021;12(1):1-9.
  • [39] Ji F, Li L, Li Z, Jin Y, Liu W. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019. Stem Cells Transl Med. 2020;9(7):813-4.
  • [40] Khoury M, Cuenca J, Cruz FF, Figueroa FE, Rocco PRM, Weiss DJ. Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. Eur Respir J. 2020; 55(6): 2000858.
  • [41] Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020; 368(6490): 473-474.
  • [42] Rashidzadeh H, Danafar H, Rahimi H, Mozafari F, Salehiabar M, Rahmati MA, Rahamooz-Haghighi S, Mousazadeh N, Mohammadi A, Ertas YN, Ramazani A. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): diagnosis, treatment, therapy and future perspectives. Nanomedicine. 2021;16(6):497-516.
  • [43] Caracciolo M, Correale P, Mangano C, Foti G, Falcone C, Macheda S, Cuzzola M, Conte M, Falzea AC, Iuliano E, Morabito A. Efficacy and Effect of Inhaled Adenosine Treatment in Hospitalized COVID-19 Patients. Front Immunol. 2021; 12: 734.
  • [44] Antonio AS, Wiedemann LM, Veiga-Junior VF. Natural products' role against COVID-19. RSC Advances. 2020; 10(39): 23379-93.
  • [45] Ramaiah MJ. mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID19. Gene Rep. 2020; 20: 100765.
  • [46] O'Driscoll L. Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment. Drug Discov Today. 2020; 25(7): 1124-1125.
  • [47] Kumar S, Zhi K, Mukherji A, Gerth K. Repurposing Antiviral Protease Inhibitors Using Extracellular Vesicles for Potential Therapy of COVID-19. Viruses. 2020; 12(5): 486.
  • [48] Muraca M, Pessina A, Pozzobon M, Dominici M, Galderisi U, Lazzari L, Parolini O, Lucarelli E, Perilongo G, Baraldi E. Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia?. J Control Release. 2020; 325: 135-40.
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Knowledge and attitudes of pharmacy students about COVID-19

Emre KARA, Nesligül ÖZDEMİR, Kutay DEMİRKAN, Serhat ÜNAL, Gülçin TELLİ DİZMAN

Bioflavonoids as potential target inhibitors in COVID-19: An in silico analysis

Uma Sankar GORLA, Koteswara Rao GSN, Umasankar KULANDAIVELU, Rajasekhar Reddy ALAVALA, Subham DAS, Alex JOSEPH

A cross-sectional survey of herbal remedy taking to prevent Covid-19 in Turkey

Şükran KÜLTÜR, Zeynep Büşra ERARSLAN

Dendritic cell-based COVID-19 vaccines: A mini review

Dewi PERTIWI, Ihsanul HAFIZ, Didi Nurhadi ILLIAN

Community pharmacy practice and challenges amid the coronavirus disease-19 pandemic: A survey in southwest Ethiopia

Behailu TEREFE, Mengist AWOKE, Dula DESSALEGN, Girma MAMO, Bezie KEBEDE, Temesgen MULUGETA

Socio-demographic determinants of beliefs about COVID-19 vaccine in Nigeria

Chinonyerem Ogadi IHEANACHO, Okechukwu Harrison ENECHUKWU, Chinelo Nneka AGUIYI IKEANYI

Association between COVID-19 and psychological disorders with possible mechanisms

Mohammad Salim HOSSAIN, Sworadip CHOWDHURY, Hoimonti DEBI, Mohammad Tohidul AMIN, Sujan BANIK, Fahad HUSSAIN

Pyrazine-chromene-3-carbohydrazide conjugates: Molecular docking and ADMET predictions on dualacting compounds against SARS-CoV-2 Mpro and RdRp

Arif MERMER, Serhii VAKAL

Evaluation of molnupiravir analogues as novel coronavirus (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) inhibitors – an in silico docking and ADMET simulation study

Tuğçe YEŞİL, İlkay KÜÇÜKGÜZEL, Necla KULABAŞ

A recent update of anticoagulant therapy on severe COVID-19 patients

Taofik RUSDIANA, Norisca Aliza PUTRIANA, Patihul HUSNI, Mohammad Rizki AKBAR, Takuya ARAKI, Anas SUBARNAS