Wind Turbine Blade Design with Computational Fluid Dynamics Analysis

Wind Turbine Blade Design with Computational Fluid Dynamics Analysis

Although there are many blade profile have been improved for use in aviation and energy sector, there is still needed blade profiles which have higher performance especially the commercial horizontal axis wind turbine efficiency is taken into account. The purpose of this study is to obtain the new blade profiles which have higher lift (CL) and drag (CD) coefficients for wind turbine making geometric modifications on several NACA wing profile systematically. For this purpose, the performance of NACA and developed new profiles have been compared with each other using computational fluid dynamics analysis and it is seen that the new developed profiles have higher performance than NACA profiles. Later on, according to the Blade Element Momentum Theory (BEM Theory) turbine blades are designed with developed new profiles and 3-dimensional CFD analyses are performed. Increase in torque in the wind turbine is determined.

___

  • [1] K.Y. Maalawi, M.T.S. Badawy, “A direct method for evaluating performance of horizontal axis wind turbines”, Renew. Sustain. Energy Rev. 5 (2001) 175–190. doi:10.1016/S1364-0321(00)00017-4.
  • [2] A. Erişen, M. Bakirci, NACA 0012 VE NACA 4412 Kanat Kesitlerinin Yeniden Tasarlanarak Had ile Analiz Edilmesi, J. Eng. Technol. Sci. 50–82.
  • [3] M. Jureczko, M. Pawlak, A. Mężyk, “Optimisation of wind turbine blades”, J. Mater. Process. Technol. 167 (2005)463–471. doi:10.1016/j.jmatprotec.2005.06.055.
  • [4] W. Xudong, W.Z. Shen, W.J. Zhu, J.N. Sørensen, C. Jin, “Shape optimization of wind turbine blades”, Wind Energy. 12 (2009) 781–803. doi:10.1002/we.335.
  • [5] A. Varol, C. İlkılıç, Y. Varol, “Increasing the efficiency of wind turbines”, J. Wind Eng. Ind. Aerodyn. 89 (2001) 809–815. doi:10.1016/S0167-6105(01)00069-1.
  • [6] M.M. Duquette, K.D. Visser, “Numerical Implications of Solidity and Blade Number on Rotor Performance of Horizontal-Axis Wind Turbines”, J. Sol. Energy Eng. 125 (2003) 425. doi:10.1115/1.1629751.
  • [7] E. Benini, A. Toffolo, “Optimal Design of Horizontal-Axis Wind Turbines Using Blade-Element Theory and Evolutionary Computation”, J. Sol. Energy Eng. 124 (2002) 357. doi:10.1115/1.1510868.
  • [8] X. Liu, Y. Chen, Z. Ye, “Optimization model for rotor blades of horizontal axis wind turbines”, Front. Mech. Eng. China. 2 (2007) 483–488. doi:10.1007/s11465-007-0084-9.
  • [9] K. Kishinami, H. Taniguchi, J. Suzuki, H. Ibano, T. Kazunou, M. Turuhami, “Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine”, in: Energy, 2005: pp. 2089–2100. doi:10.1016/j.energy.2004.08.015.
  • [10] M. Guleren, S. Demir, “Rüzgar türbinleri için düşük hücum açılarında farklı kanat profillerinin performans analizi”, Isı Bilim. ve Tek. Derg. 31 (2011) 51–59.
  • [11] P. Devinant, T. Laverne, J. Hureau, “Experimental study of wind-turbine airfoil aerodynamics in high turbulence”, J. Wind Eng. Ind. Aerodyn. 90 (2002) 689–707. doi:10.1016/S0167-6105(02)00162-9.
  • [12] L. Bermudez, A. Velázquez, A. Matesanz, “Numerical simulation of unsteady aerodynamics effects in horizontal-axis wind turbines”, Sol. Energy. 68 (2000) 9–21. doi:10.1016/S0038-092X(99)00056-0.
  • [13] I. Ansys, ANSYS FLUENT theory guide, Knowl. Creat. Diffus. Util. 15317 (2009) 724–746. doi:10.1016/0140-3664(87)90311-2.
  • [14] J.F. Manwell, J.G. McGowan, A.L. Rogers, “Wind energy explained: theory, design and application”, 2009. doi:10.1002/9781119994367.
  • [15] T.C. Yenilenebilir Enerji Genel Müdürlüğü, http://www.eie.gov.tr/.