Separation of Copper and Zinc from aqueous solution using Liquid-Membrane-Gel (LMG) containing Trioctylphosphine Oxide TOPO as Carrier

Separation of Copper and Zinc from aqueous solution using Liquid-Membrane-Gel (LMG) containing Trioctylphosphine Oxide TOPO as Carrier

Transfer and extraction of metallic species (Ag+ and Cu2+ ions) through a flat sheet dense supported-liquid-membrane was investigated previously [1, 2] using thin sheets of polybutadiene rubber cross-linked with 0.1% and/or 0.4% of dicumylperoxyde at 160°C for 15 minutes noted BR1 and for 5 minutes noted BR2 [3]. In this work, column filled with a liquid-membrane-gel LMG in form of beads impregnated beforehand with the solvating organo-phosphoric carrier the trioctyl phosphine oxide TOPO, was used to study the extraction-concentration-recovery and the transport of Cu (II) and Zn (II) from an aqueous solution. Extraction of Cu (II) at different pH aqueous solutions has been described. The speciation of the extracted complexes in the membrane supported organic phase (extractant) was also, performed using the theoretically derived equations to elucidate the stoichiometry and the Cu (II) mechanism complexation through the liquid-membrane-gel LMG. Kinetic parameters were calculated from the experimental data. About 86-97% and 50-82% of respectively copper and zinc, were extracted from aqueous solutions at pH = 6 according to first-order kinetics and the separation factor away from the unit. The solvated copper species by TOPO are of the type [Cu(NO3)2]TOPO.

___

  • [1] N. Taoualit, D. E. Hadj-Boussaad. Metallic species (Ag+ and Cu2+) transfert through a membrane-gel, Desalination 144 (2002) 273-277. DOI: 10.1016/S0011-9164(02)00327-2 [2] N. Taoualit, D.E. Hadj-Boussaad. Transport of silver metal ions through a liquid membrane gel using a solvating extractant (TOPO). Desalination 193 (2006), 321–326. DOI:10.1016/j.desal.2005.08.025 [3] E.H. Rifi, Extraction métallique par des gels hydrophobes, Doctoral thesis, Louis Pasteur University, Strasbourg, France, 1988. [4] Organisation mondiale de la santé. Traces elements in human nutrition; a report of a WHO Expert Committee. WHO Technical Report Series 532, Genève. P. 70 (1973). [5] G. Leóna, M. A. Guzmánb. Facilitated transport of copper through bulk liquid membranes containing different carriers: compared kinetic study, Desalination 223 (2008) 330–336. DOI:10.1016/j.desal.2007.01.216 [6] Association Toxicologie-Chimie MDA 10 206 quai de Valmy, 75010 paris http://atctoxicologie.free.fr [7] M. Kermiche, S. Djerad. Facilitated transport of copper through bulk liquid membrane containing di-2ethylhexyl phosphoric acid, Desalination and Water Treatment 36 (1-3) (2011) 261-269. [8] F.J. Alguacil, M. Alonso. Transport of Au(CN)2− across a supported liquid membrane using mixtures of amine Primene JMT and phosphine oxide Cyanex 923 Hydrometallurgy, Volume 74, Issues 1–2 (2004) 157–163. DOI:10.1016/j.hydromet.2004.03.001 [9] D.K. Hale. National Research Development Corp., British Patent (Oct. 12, 1955) Br. 738, 500. [10] H. Small. The Dow Chemical Company, U.S Patent, 3, 102, 782 (Sept. 3, 1963). [11] A.N. Zelikman, L.V. Myakisheva, L.A. L'Nskaya, E.A. Baibekova, Yu.F. Korovin and V.K. Myasnikov. Tsvent. Met. (Moscow), 3 (1990) 74-78. [12] K. Shakir, M. Aziz and S.G. Beheir. Hydrometallurgy 31 (1-2) (1992) 41-54. [13] T. Braun and A.B. Farag. Talanta 22 (1975) 699. [14] S. Torok, T. Braun, P. Van Dyck and R. Van Grieken. X-Ray Spectrometry 15 (1986) 7. [15] T. Braun and A.B. Farag. Anal. Chem. Acta 76 1975) 107. [16] T. Braun and S. Palagyi. Anal. Chem. 51 (1979) 1697. [17] T. Braun and M.N. Abbas. Anal. Chim. Acta 131 (1981) 311. [18] M.N. Abbas, A. Vertes and T. Braun. Radiochem. Radioanal. Letters, 54, 17 (1982). [19] T. Braun and M.N. Abbas. Anal. Chim. Acta 160 (1984) 277. [20] H.D. Gesser, and S. Ahmed. J. Radioanal. Nucl. Chem. 140 (2) (1990) 395-408. [21] A. Bachai, H.J.M. Bowen. Analyst 101 (1976) 661. [22] N. Taoualit, I. Abidet, and D.E. Hadj-Boussaad. Extraction of copper and zinc by liquid-membrane-gel. Matec web of conferences 3 01065 (2013). DOI: 10.1051/matecconf /20130301065 [23] T. Yano, S. Ide, Y. Tobeta, Kobayachi, Ueno H., K. Talanta 23 (1975) 457. [24] DE. A. K Kouphar, S.M, Chalmers R.A, Solvent extraction of metals», Van Nostand Reinhold company (1970). [25] L. Hatinger. Guide d’analyse des eaux de traitements de rejets de traitements de surfaces, CETIM (1990). [26] N. Taoualit. Contribution à l’étude de l’extraction liquide-gel de l’argent. Masters Thesis, University of Blida, Algeria, 1999. [27] C. Zidi, R. Tayeb, M. Dhahbi. Comparison between facilitated transport through a Supported Liquid Membrane (SLM) of phenol and vanillin extracted from aqueous solutions. J. Mater. Environ. Sci. 5 (3) (2014) 779-782. [28] I. Ait-Khaldoune. Optimisation du transport des cations Cu(II), Zn(II) et Cd(II) par le tri-n-butylphosphate (TBP) à travers les membranes d’affinité. Magister thesis, of Tizi-Ouzou University, Algérie 2011, [29] X. Yang, H. Duan, D. Shi, R. Yang, S. Wang, H. Guo. Facilitated transport of phenol through supported liquid membrane containing bis(2-ethylhexyl) sulfoxide (BESO) as the carrier. Chemical Engineering and Processing 93 (2015) 79–86. DOI: 10.1016/j.cep. 2015.05.003 [30] X. Yang, A. Zou, J. Qiu, S. Wang and H. Guo. Phenol Removal from Aqueous System by Bis(2-ethylhexyl) Sulfoxide Extraction. Separation Science and Technology Volume 49 (2014) - Issue 16. DOI: 10.1080/01496395.2014.937497