ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
Let $R$ be a commutative Noetherian ring, $I, J$ two proper ideals of
___
- A. Atazadeh, M. Sedghi and R. Naghipour, On the annihilators and attached
primes of top local cohomology modules, Arch. Math., 102(3) (2014), 225-236.
- K. Bahmanpour, J. A'zami and Gh. Ghasemi, On the annihilators of local
cohomology modules, J. Algebra, 363 (2012), 8-13.
- M. P. Brodmann and R. Y. Sharp, Local Cohomology: an Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Math-
ematics, 60, Cambridge University Press, Cambridge, 1998.
- L. Chu, Top local cohomology modules with respect to a pair of ideals, Proc.
Amer. Math. Soc., 139(3) (2011), 777-782.
- L. Chu and W. Wang, Some results on local cohomology modules dened by a
pair of ideals, J. Math. Kyoto Univ., 49 (2009), 193-200.
- C. Huneke and J. Koh, Coniteness and vanishing of local cohomology modules,
Math. Proc. Cambridge Philos. Soc., 110(3) (1991), 421-429.
- L. R. Lynch, Annihilators of top local cohomology, Comm. Algebra, 40(2)
(2012), 542-551.
- G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. Math., 113(1) (1993),
41-55.
- L. T. Nhan and T. D. M. Chau, On the top local cohomology modules, J.
Algebra 349 (2012), 342-352.
- Sh. Payrovi and S. Karimi, Upper bounds and attached primes of top local
cohomology modules dened by a pair of ideals, J. Hyperstruct., 3(2) (2014),
101-107.
- P. Schenzel, Cohomological annihilators, Math. Proc. Cambridge Philos. Soc.
91(3) (1982), 345-350.
- R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a
nonclosed support dened by a pair of ideals, J. Pure Appl. Algebra, 213(4)
(2009), 582-600.