Effective Atomic Number and Electron Density Determination of Some Amino Acids by Using Scattering Intensity Ratio of 59.54 keV Gamma Rays

Bu çalışmada H, C, N ve O içeren F-Glycine (C2H5O2N), Alenine (L, D) (C3H7O2N), Leucine (L, D) (C6H13O2N), L-Proline (C5H9O2N) aminoasitlerinin etkin atom numarası ve elektron yoğunlukları belirlenmiştir. Diğer çalışmalardan farklı olarak, ilgili parametreler gamma ışınlarının saçılma şiddet oranları kullanılarak tespit edilmiştir. Geleneksel uygulamalarda soğurma tekniği kullanılarak tespitler yapılmaktadır. 5 Ci güce sahip 241Am radyoaktif halka izotop kullanılarak gamma ışınları elde edilmiştir. 5 Ci 241Am halka kaynaktan yayınlanan gamma ışınları hedeften saçılmıştır. Saçılan fotonlar HPGe yarıiletken dedektör kullanılarak sayılmıştır. Dedektör sistemine bağlı yükseltici ve Accuspec kartı bulunmaktadır. Teorik değerler, deneyler sonucunda elde edilen değerler ile karşılaştırılmıştır ve uyum içinde oldukları tespit edilmiştir.                                                              

Effective Atomic Number and Electron Density Determination of Some Amino Acids by Using Scattering Intensity Ratio of 59.54 keV Gamma Rays

In this study the specific atomic arguments have been determined for F-Glycine (C2H5O2N), Alenine (L, D) (C3H7O2N), Leucine (L, D) (C6H13O2N), L-Proline (C5H9O2N) amino acids. The calculation procedure of the experimental values of atomic parameters was carried out by using scattering intensity ratios of γ-rays. These γ-rays were obtained from 5 Ci 241Am annular radioactive source.  In traditional studies, these arguments were determined by transmission technique. The scattered γ-rays were counted by using an HPGe semiconductor detector. Our detecting system was connected to a separate amplifier and an Accuspec card. Theoretical values of related atomic parameters for amino acid targets were calculated and cross checked with our experiential values. Our deliberated values are in good concordance with theoretical calculations.

___

  • Akman, F., Geçibesler, I.H., Sayyed, M.I., Tijani, S.A., Tufekci, A.R., Demirtas, I. 2018. Determination of some useful radiation interaction parameters for waste foods. Nuclear Engineering and Technology, 50, 944-949.
  • Baris, T., Tongucb, Arslana, H., Al-Buriahi, M.S. 2018. Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiation Physics and Chemistry, 153, 86–91.
  • Demir., D, Turşucu, A. 2013. Measurement of the effective atomic number of FexCr1_x and FexNix alloys using scattering of gamma rays. Journal of Alloys and Compounds, 581, 213-216.
  • Elmahroug, Y., Tellili, B., Souga, C. 2015. Determination of total mass attenuation constants, effective atomic numbers and electron densities for different shielding materials. Annals of Nuclear Energy 75 268.
  • Eritenko, A.N., Tsvetiansky, A.L., Pole, A, A. 2018. Analytical dependence of effective atomic number on the elemental composition of matter and radiation energy in the range 10–1000 keV. Nuclear Instruments and Methods in Physics Research B, 414, 107–112.
  • Firestone, R.B., Ekström, L.P. 2004. http://ie.lbl.gov.toi/ WWW Table of Radioactive Isotopes, Version 2.1, January.
  • Hosamani, M.M., Badiger, N.M. 2018. Determination of effective atomic number of composite materials using backscattered gamma photons – A novel Method. Chemical Physics Letters, 695, 94–98.
  • Hubbell, J.H., Overbo, I.J. 1979. Relativistic atomic form factors and photon coherent scattering cross-section. Journal of Physical and Chemical Reference Data, 8, 69.
  • Kong, X., Dang, L., Shao, X., Yin, L., Ji, Y., 2018. Rapid method for determination of 90Sr in biological samples by liquid scintillation counting after separation on synthesized column. Journal of Environmental Radioactivity, 193–194, 15–19.
  • Morteza, A., Nolan, L., John, T., Yeow, W. 2013. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 300, 30.
  • Muhadar, G.S., Sahota, H.S. 1988. Effective atomic number studies in different soils for total photon interaction in the energy region 10–5000 kev. Applied Radiation and Isotopes, 39, 1251.
  • Singh, M. P., Singh, B., Sandhu, B.S. 2007. Measurement of the effective atomic number of composite materials using Rayleigh to Compton scattering of 279 keV gamma rays. Physica Scripta, 76, 281.
  • Singh, M. P., Singh, B., Sandhu, B.S. 2009. Investigations of multiple scattering of 320 keV rays: a new technique for assigning effective atomic number to composite material. Physica Scripta, 79, 035101.
  • Singh, M.P., Sharma, A., Singh, B., Sandhu, B.S. 2010a. Non-destructive evaluation of scientific and biological samples by scattering of 145 keV gamma rays. Radiation Measurements 45, 960.
  • Singh, M. P., Sharma, A., Singh, B., Sandhu, B.S. 2010b. A non-destructive technique for assigning effective atomic number to scientific samples by scattering of 59.54 keV gamma photons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,detectors and Associated Equipment, 619, 63.
  • Weyrich, W. 1975. The electron momentum distribution in solidpotassium fluoride, studied by Compton scattering. Berichte der Bunsengesellschaft für physikalische chemie, 79,11-1085.