90 Derecelik kare kesitli dirsekte türbülanslı akışın sayısal analizi

Bu çalışmada, 90°’lik kare kesitli bir dirsekte, kararlı, sıkıştırılamaz, viskoz ve 3-D türbülanslı akışın sayısal olarak incelenmesi amaçlanmıştır. İncelenen kare kesitli dirsek üzerinde literatürde deneysel çalışma yapılmış olup [10, 12 ve 14], kesiti 80x80 mm2, eğrilik yarıçapı 160 mm, giriş uzunluğu 2500 mm ve çıkış uzunluğu 1500 mm olarak incelenmiştir. Türbülans modeli olarak RNG (ReNormalization Group) k-epsilon modeli, SST (Shear-Stress Transport) k-omega modeli ve RSM (Reynolds Stress Model) modeli seçilmiştir. Sayısal analizler Re=40000’lık hava akışı için gerçekleştirilmiştir. Sonuç olarak, dirsekte türbülanslı akışın sayısal analizi için en uygun modelin RNG k-epsilon modeli olduğu görülmüştür

Numerical analysis of turbulent flow in 90 degree square sectioned bend

In this study, steady, incompressible, viscos and 3-D turbulent flow in a 90° square section bend numerical investigation has been aimed. Square section bend examined on experimental studies have been done in the literature [10, 12 ve 14], which has 80x80 mm2 section, 160 mm curvature radius, 2500 mm upstream and 1500 mm downstream. RNG (renormalization group) k-epsilon, SST (shear-stress transport) k-omega and RSM (Reynolds stress model) models are selected. Numerical analysis was carried out for Re=40000 air flow. As a result, it is seen that the most acceptable model for numerical analysis of turbulent flow in bend is RNG k-epsilon turbulence model

___

  • Hwang J.J., Lia T.Y. and Chen S.H., Prediction of turbulent fluid flow and heat transfer in a rotating periodical two-pass square duct, International Journal of Numerical Methods for Heat & Fluid Flow, 5(8), 519-538, 1998.
  • Piller M., and Nobile E., Direct numerical simulation of turbulent heat transfer in a square duct, International Journal of Numerical Methods for Heat & Fluid Flow, 6(12), 658-686, 2002.
  • Lee H.G. and Baek J.H., A Numerical study of the similarity of fully developed turbulent flows in orthogonally rotating square ducts and stationary curved square ducts, International Journal of Numerical Methods for Heat & Fluid Flow, 3(12), 241-257, 2002.
  • Bodnar, T. and Prihoda, J., Numerical simulation of turbulent free-surface flow in curved channel, Flow Turbulence Combust, (76), 429-442, 2006.
  • Fung-Chul, S. Analysis of potential flow field in a two-dimensional duct, Aircraft Engineering and Aerospace Technology, 73(3), 271-278, 2001.
  • Rokni, M., and Sunden, B., 3D numerical investigation of turbulent forced convection in wavy ducts with trapezodial cross-section, International Journal for Numerical Methods for Heat & Fluid Flow, 8(1), 118-141, 1998.
  • Papa, F., Keith T.G., DeWitt, Jr. And K.J., Vaidyanathan, K., Numerical calculation of developing laminar flow in rotating ducts with a 180° bend, International Journal for Numerical Methods for Heat & Fluid Flow, 12(7), 780-799, 2002.
  • Fortunato, B., A fast Euler solver for the solution of three-dimensional rotational compressible flows, Engineering Computations, 14(3), 306-324, 1997.
  • Yang, W., and Kuan, B., Experimental investigation of dilute turbulent particulate flow inside a curved 90° bend, Chemical Engineering Science, 61, 3593-3601, 2006.
  • Sudo K; Sumida M; Hibara H, Experimental investigation on turbulent flow in a circular- sectioned 90-degreed bend.Exp Fluids, 25, 42-49, 1998.
  • Sudo K; Sumida M; Hibara H , Experimental investigation on turbulent flow in a circular- sectioned 180-degreed bend.Exp Fluids, 28, 51-57, 2000.
  • Sudo K, Sumida M, Hibara H, Experimental investigation on turbulent flow in a square – sectioned 90-degree bend, Experiments in Fluids, 30, 246-252, 2001.
  • Taylor, AMKP., Whitelaw, JH. and Yianneskis, M. Curved ducts with strong secondary motion: Velocity measurements of developing laminar and turbulent flows. Journal of Fluids Engineering, 104, 350-359, 1982.
  • M.Raisee, H.Alemi and H. Iacovides, Prediction of developing turbulent flow in 90o curved ducts using linear and non-linear low-Re International Journal for numerical methods in Fluids, 51(12), 1379-1405, 2006. k-ε models,
  • Fluent Incorporated FLUENT User’s Guide Version 6.1, 1998.
  • İlbaş, M., Studies of Ultra Low NOx Burner, PhD Thesis University of Wales, Cardiff, U.K., 1997.