Bi-2223 Süperiletken Seramiklerde Peletizasyon Basıncının Yapısal, Elektriksel ve Mekanik Özellikler Üzerine Etkisi

Bu çalışmada Bi-2223 tozlar farklı peletizasyon basınç değerleri ile külçe formuna getirilmiş ardından külçeler 840ºC’de 36 saat tavlanmıştır. Basıncın Bi-2223 külçelerin yapısal, mekanik ve elektriksel özellikleri üzerine etkileri incelenmiştir. Yapısal analizlerin değerlendirilmesi için X-ışını Kırınımı (XRD) spektroskopisi ölçümleri kullanılmıştır. Mekanik analizler için oda sıcaklığında Vickers Mikrosertlik ölçümleri yapılmıştır. Elektriksel analizlerde ise dört kontak I-V ölçümleri kullanılmıştır. Elde edilen sonuçlara göre, Bi-2223 kristal faz yoğunluğunun, sertlik değerinin ve elektrik taşıma kapasitesinin basınca ciddi bir şekilde bağlı olduğu görülmüştür. Bu bağlamda, basıncın artması ile sertlik değerlerinin kristal yapıdaki faz geçişlerine ve yüzey artık basınç gerilim bölgelerinin artışına bağlı olarak yükseldiği tespit edilmiştir. Ayrıca, hesaplanan elastisite modülü ve akma dayanımı gibi genel mekanik performans değerlerinin basınca bağlı olarak arttığı gözlemlenmiştir. Bu bulgu kristal yapıda hali hazırda var olan kovalent ve özellikle iyonik bağ kuvvetlerinin artmasının sonucu olabilir. Bununla birlikte, numunelerin plato limit bölgelerinde yükten bağımsız mikrosertlik değerleri Meyer yasası, Orantılı Numune Direnç (OND) ve Indentation Induced Cracking (IIC) yöntemleri ile analiz edilmiştir. Analiz sonucunda IIC modelin gerçek mikrosertlik değerlerini incelemede daha başarılı olduğu bulunmuştur. Kritik akımın uygulanan basıncın artması ile düştüğü gözlemlenmiştir. Örneklerin yoğunlukları Arşimet yasası kullanılarak ölçülmüştür. Teknolojik kullanım alanına bağlı olarak külçe Bi-2223 örneklerin üretiminde uygulanması gereken optimum basınç değeri detaylarıyla tartışılmıştır.

The Effect of Pelletization Pressure on Structural, Electrical, and Mechanical Properties of Bi-2223 Superconducting Ceramics

In this present work, Bi-2223 powders were used to fabricate the bulk form via various pelatization pressures and then bulks were annealed at 840 οC for 36 hours. The effects of pressure on the structural, mechanical and electrical characteristics of Bi-2223 bulks were investigated. X-ray Diffraction (XRD) spectroscopy measurements were used to evaluate the structural analysis. Vickers Microhardness measurements were performed at room temperature for mechanical analysis. Four contact I-V measurements were used in evolution of electrical analysis. Considering to the obtained results, it was observed that the relative ratio of the Bi-2223 crystalline phase, the hardness value and the electrical carrying capacity were strictly dependent on the pressure. In this context, it has been determined that with the increase of pressure, the hardness values increase depending on the phase transitions in the crystal structure and the rise in the surface residual pressure stress regions. In addition, it has been observed that the overall mechanical performances such as the calculated modulus of elasticity and yield strength increase with the pressure. This finding may be the result of improved covalent and especially ionic bond strengths already present in the crystal structure. Also, load-independent microhardness values at plato regime of the samples were analyzed through the Meyer’s law, Proportional Sample Resistance (PSR), and Indentation Induced Cracking (IIC) model. The ICC was found to be more effective in determination of the real microhardness values. The decline on the critical current was also observed with increasing the pressure. Densities of the samples were calculated through the Archimedes’ law. The optimum pressure value to be applied in the fabrication of bulk Bi-2223 samples, depending on the technological usage field, is discussed in detail.

___

  • [1]H. K. ONNES, “The superconductivity of mercury,” Comm. Phys. Lab. Univ. Leiden, vol. 122, pp. 122–124, 1911, Accessed: Jan. 24, 2022. [Online]. Available: https://ci.nii.ac.jp/naid/10027961803.
  • [2]Z. Deng ve diğ., “A High-speed Running Test Platform for High-temperature Superconducting Maglev,” IEEE Trans. Appl. Supercond., pp. 1–1, 2022, doi: 10.1109/TASC.2022.3143474.
  • [3]Y. Xiao, H. Jin, X. Pan, W. Luo, H. Lin, ve Y. Zhao, “Fabrication and Superconducting Properties of 19-Filamentary Sr0.6K0.4Fe2As2/Ag/Monel Composite Wires and Tapes,” J. Supercond. Nov. Magn. 2022, pp. 1–7, Jan. 2022.
  • [4]H. Liang, Y. Chen, R. Duan, Y. Lu, ve J. Sheng, “Numerical Study on the On-Grid Performance of Superconducting Cable Cooperated With R-SFCL,” IEEE Trans. Appl. Supercond., vol. 32, no. 4, pp. 1–5, Jun. 2022.
  • [5]Z. A. Thoker ve S. A. Lone, “Dynamic performance improvement of wind-diesel power systemthrough robust sliding mode control of hybrid energy storage system:,” https://doi.org/10.1177/0309524X211066787, p. 0309524X2110667, Jan. 2022.
  • [6]J. Shi, X.-F. Li, ve J. Sheng, “Compensation effect of Superconducting Hybrid Trapped Field Magnet,” IEEE Trans. Appl. Supercond., pp. 1–1, 2022.
  • [7]D. Patel ve diğ., “MgB2 Superconducting Joint Architecture with the Functionality to Screen External Magnetic Fields for MRI Magnet Applications,” ACS Appl. Mater. Interfaces, vol. 14, no. 2, pp. 3418–3426, Jan. 2022.
  • [8]K. A. Müller ve J. G. Bednorz, “The Discovery of a Class of High-Temperature Superconductors,” Science (80-. )., vol. 237, no. 4819, pp. 1133–1139, Sep. 1987.
  • [9]D. Yegen, A. Varilci, M. Yilmazlar, C. Terzioglu, ve I. Belenli, “Magnetic properties of Sm-doped Bi-2223 superconductor studied by low field local Hall generator ac susceptibility,” Phys. C Supercond. its Appl., vol. 466, no. 1–2, pp. 5–10, 2007.
  • [10]M. Yilmazlar, H. Aydin, A. Varilci, ve C. Terzioglu, “The effect of Sm substitution on properties of Bi1.6Pb0.4Sr2Ca2-xSmxCu3Oy superconductors,” J. Mater. Sci., vol. 42, no. 21, pp. 9030–9036, 2007.
  • [11]N. K. Saritekin, C. Terzioglu, M. Pakdil, T. Turgay, ve G. Yildirim, “Solubility limit of tetravalent Zr nanoparticles in Bi-2223 crystal lattice and evaluation of fundamental characteristic properties of new system,” J. Mater. Sci. Mater. Electron., vol. 27, no. 2, pp. 1854–1865, 2016.
  • [12]P. Sen ve diğ., “The study of texturing of Bi2Sr2CaCu2O8+δ and Bi1.84Pb.34Sr1.91Ca2.03Cu3.06O10+δ superconductors as a function of pelletization function,” Phys. C Supercond. its Appl., vol. 255, no. 3, pp. 306–310, Feb. 1995.
  • [13]M. Tepe, I. Avcı, ve D. Abukay, “Effect of pelletization pressure on structural properties and critical current hysteresis of ceramic superconducting Bi1.7Pb0.3Sr2Ca2Cu3O,” Phys. stat. sol., vol. 198, no. 2, pp. 420–426, 2003.
  • [14]K. Kocabaş, M. Gökçe, M. Çiftçioğlu, ve Ö. Bilgili, “Effect of compaction pressure on structural and superconducting properties of Bi-2223 superconductors,” J. Supercond. Nov. Magn., vol. 23, no. 3, pp. 397–410, 2010.
  • [15]D. Marconi, C. Lung, ve A. V. Pop, “The influence of pelletization pressure on normal and superconducting properties of (Bi,Pb):2223 bulk system,” J. Alloys Compd., vol. 579, pp. 355–359, 2013.
  • [16]K. Habanjar, A. Najem, A. M. Abdel-Gaber, ve R. Awad, “Effect of pelletization pressure on the physical and mechanical properties of (Bi, Pb)-2223 superconductors,” Phys. Scr., vol. 95, no. 6, 2020.
  • [17]A. R. Abdulridha, E. Al-Bermany, F. S. Hashim, ve A. H. Omran Alkhayatt, “Synthesis and characterization and pelletization pressure effect on the properties of Bi1.7Pb0.3Sr2W0.2Ca2Cu3O10+δ superconductor system,” Intermetallics, vol. 127, no. May, p. 106967, 2020.
  • [18]A. Lenders, M. Ullrich, ve H. C. Freyhardt, “Influence of thermal cycling on the mechanical properties of VGF melt-textured YBCO,” Phys. C, vol. 279, pp. 173–180, 1997.
  • [19]C. Veerender, V. R. Dumke, ve M. Nagabhooshanam, “Hardness and elastic moduli of Bi2−xPbxCa2Sr2Cu3Oy superconductors,” Phys. status solidi, vol. 144, no. 2, pp. 299–309, 1994.
  • [20]D. Tabor, The Hardness of Metals. Oxford, Clarendon Press, 1951.
  • [21]G. Yildirim ve diğ., “Effect of Mn addition on structural and superconducting properties of (Bi, Pb)-2223 superconducting ceramics,” J. Supercond. Nov. Magn., vol. 25, no. 2, pp. 381–390, 2012.
  • [22] N. H. Mohammed ve diğ., “Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2,” Mater. Sci. Appl., vol. 3, no. 4, pp. 224–233, Apr. 2012.
  • [23]S. Kaya, “Nanostructure, optical and electrical properties of p-NiO/n-Si heterojunction diodes,” Appl. Phys. A Mater. Sci. Process., vol. 126, no. 8, pp. 1–9, 2020.
  • [24]B. Akkurt, U. Erdem, Y. Zalaoglu, A. T. Ulgen, T. Turgay, ve G. Yildirim, “Evaluation of crystallographic and electrical-superconducting features of Bi-2223 advanced ceramics with vanadium addition,” J. Mater. Sci. Mater. Electron., vol. 32, no. 4, pp. 5035–5049, 2021.
  • [25]O. Bilgili, Y. Selamet, ve K. Kocabaş, “Effects of li substitution in Bi-2223 superconductors,” J. Supercond. Nov. Magn., vol. 21, no. 8, pp. 439–449, 2008.
  • [26]O. Ozturk, H. A. Cetinkara, E. Asikuzun, M. Akdogan, M. Yilmazlar, ve C. Terzioglu, “Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors,” J. Mater. Sci. Mater. Electron., vol. 22, no. 9, pp. 1501–1508, 2011.
  • [27] M. Dogruer, C. Aksoy, G. Yildirim, O. Ozturk, ve C. Terzioglu, “Influence of Sr/Nd partial replacement on fundamental properties of Bi-2223 superconducting system,” J. Mater. Sci. Mater. Electron., vol. 32, no. 6, pp. 7073–7089, 2021.
  • [28]O. Ozturk, G. Yildirim, E. Asikuzun, M. Coskunyurek, M. Yilmazlar, ve A. Kilic, “Change of formation velocity of Bi-2212 superconducting phase with annealing ambient,” J. Mater. Sci. Mater. Electron., vol. 24, no. 11, pp. 4643–4654, Nov. 2013.
  • [29]H. Li ve R. C. Bradt, “The microhardness indentation load/size effect in rutile and cassiterite single crystals,” J. Mater. Sci., vol. 28, no. 4, pp. 917–926, Jan. 1993.
  • [30]K. Sangwal, “On the reverse indentation size effect and microhardness measurement of solids,” Mater. Chem. Phys., vol. 63, no. 2, pp. 145–152, Feb. 2000.
  • [31]E. Asikuzun, O. Ozturk, L. Arda, D. Akcan, S. D. Senol, ve C. Terzioglu, “Preparation, structural and micromechanical properties of (Al/Mg) co-doped ZnO nanoparticles by sol–gel process,” J. Mater. Sci. Mater. Electron., vol. 26, no. 10, pp. 8147–8159, Oct. 2015.
  • [32]D. Dew-Hughes, “The critical current of superconductors: an historical review,” 2001.
  • [33]R. Terzioǧlu, M. Vojenčiak, J. Sheng, F. Gömöry, T. F. Çavuş, ve I. Belenli, “AC loss characteristics of CORC® cable with a Cu former,” Supercond. Sci. Technol., vol. 30, no. 8, 2017.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: 4
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Beyin Tümör Tespiti İçin Derin Öğrenme Temelli Bilgisayar Destekli Tanı Sistemi

Tarıkcan DOĞANAY, Oktay YILDIZ

Farklı En Boy Oranlarına Sahip Dikdörtgensel Prizmatik Cisimler Etrafındaki Akış Yapısının Deneysel Olarak İncelenmesi

Cemre POLAT, Doğan Burak SAYDAM, Mustafa SÖYLER, Coskun ÖZALP

SPT-N’ den Hesaplanan Zeminin Kayma Dalgası (Vs)’nın Eskişehir Zemini için İstatistiksel Olarak Değerlendirilmesi

Ebru CİVELEKLER, Yücel GÜNEY

Mn-bölgesi Katkılamanın La0.62Bi0.05Ca0.33Mn1-xRuxO3 Manganit Sisteminin Manyetokalorik Özellikleri Üzerine Etkileri

Selda KILIÇ ÇETİN, Gönül AKÇA, Ahmet EKİCİBİL

Bazı Entomopatojenik Fungusların Zea mays L. ve Helianthus annuus L.'nin Büyümesi Üzerindeki Etkisi

Fadime DONBALOĞLU BOZCA, Ardahan ESKİ, Sema LEBLEBİCİ

Dijital Teknolojiler Aracılığıyla Kültürel Mirasa Erişim: Akdamar Kilisesi’nin Etkileşimli 3B Modeli

Ahmet USLU

Al6061 Talaşının Toz Metalurjisi ile Geri Kazanımı

Ümit Gencay BAŞCI, Hasan İsmail YAVUZ, Rıdvan YAMANOĞLU

Hastane Aciline Gelenlerde Kalp Krizi Risk Olasılığının Belirlenmesi için Bir Karar Destek Sisteminin Oluşturulması

Gülüzar ÖZDEMİR, Ömer BİLEN, Sezen CANIM ATEŞ

2,6-bis-benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu ve Elektrokimyasal Özelliklerinin İncelenmesi

Fatih PEKDEMİR

Türkçe YouTube Yorumları Üzerinde Spam Filtreleme

Sevinj SHİRZADOVA, Alper Kürşat UYSAL