Düz ve Eğimli Arazi Koşullarında Zeytin Üretiminin Enerji ve Maliyet Analizi

Zeytin Türkiye’nin batı bölgelerindeki tarımsal üretim alanlarında yetişen önemli ürünlerden biridir. Zeytinin bu bölgede sürdürülebilir düzeyde yetişmesi için enerji kullanım etkinliği ve maliyet analiz gibi değerlendirmeler önem taşımaktadır. Bu amaçla gerekli olan veriler zeytin üretimi yapan 165 işletmeden anket yolu ile toplandı ve değerlendirildi. Elde edilen sonuçlara göre en yüksek toplam enerji girdisi 31098.2 MJ ha-1 ile yoğun tarımsal girdi ile üretimi gerçekleştiren düz arazi koşullarındaki modern üretim sistemi yer almış ve bunu sırasıyla 14293.3 MJ ha-1 ile geleneksel-düz ve 7380.5 MJ ha-1 ile geleneksel-eğimli arazilerdeki sistemler izlemiştir. Makina girdisi dikkate alınmaksızın, modern-düz (%12.93) ve geleneksel-düz (%8.95 9) üretim sistemlerinde kimyevi gübre toplam girdi içerisinde en yüksek paya sahip olduğu belirlenmiştir. En yüksek enerji kazanımı, oranı ve verimliliği ile en düşük spesifik enerji modern-düz sistemde sırasıyla 14332.8 MJ ha-1, 1.46, 0.93 kg MJ-1ve 1.07 MJ kg-1 şeklinde hesaplanmıştır. Aynı zamanda bu sistemde en yüksek net kar (5256.5 € ha-1 ) ve maliyet oranı (1.99) ile verimliliği (1.66 kg €-1 )’de tespit edilmiştir. Bu nedenle, elde edilen sonuçlar yarı kurak iklim özelliği gösteren bölgede çevre koşullarına zarar vermeden zeytin üretiminin sürdürülebilir düzeyde devam edebileceğini ve ayrıca bu sonuçların bölge için yararlı bir veri kaynağı oluşturmada etkili olabileceği sonucuna varılmıştır.

Energy Use and Cost Analysis of Olive under Flat and Sloping Growing Conditions

Olive is an important crop that grows under different cultivation systems of the western Turkey.Efficient use of energy and cost is an important step in terms of increasing the sustainability of olive cultivation.Energy and cost of olive farms analysed under traditional-flat/sloping and intensive-flat systems established onhilly or flat areas in a semiarid environment. Data of inputs and outputs collected in 165 farms through face toface questionnaires. Total energy consumed was 31098.2, 14293.3 and 7380.5 MJ ha-1for intensive-flat,traditional-flat and sloping systems. Energy inputs of fertilizer was the highest for traditional and intensive flatby 12.93 and 8.95% of the total energy inputs, respectively. Highest net energy gain, ratio, productivity andlowest specific energy were estimated as 14332.8 MJ ha-1, 1.46, 0.93 kg MJ-1and 1.07 MJ kg-1, respectively, inintensive-flat system. Highest net return (5256.5 € ha-1), a benefit to cost ratio (1.99) and productivity (1.66 kg €-1) was calculated for the same system. Therefore, the results can be very useful in evaluating the sustainability ofolive cultivation in this part of the country possessing the characteristic of semiarid, and can also provide auseful guide in order to prioritize the steps for increasing energy efficiency and decreasing cost withoutworsening environmental conditions.

___

  • Bernardi, B., Falcone, G., Stillitano, T., Benalia, S., Strano, Bacenetti, A.J., De Luca, A.I., 2018. Harvesting system sustainability in Mediterranean olive cultivation. Sci. of the Total Envi. 625, 1446-1458.
  • Bilandzija, N., Voca, N., Kricka, T., Matin, A., Jurisic, V., 2012. Energy potential of fruit tree pruned biomass in Croatia. Spanish J of Agri. Res. 10, 292-298.
  • Cappelletti, G.M., Ioppolo, G., Nicoletti, G.M., Russo, C., 2014. Energy requirement of extra virgin olive oil production. Sustainability. 6, 4966-4974.
  • FAOSTAT, 2018. The Food and Agriculture Organization (FAO) of the United Nations (UN) Statistical Database. http://www.faostat3.fao.org; 2019 (accessed 15 September 2019).
  • Guzmán, G.I., Alonso, A.M., 2008. A comparison of energy use in conventional and organic olive oil production in Spanish. Agricultural Systems. 98, 167-176.
  • Hemmati, A., Tabatabaeefar, A., Rajabipour, A., 2013. Comparison of energy flow and economic performance between flat land and sloping land olive orchards. Energy. 61, 472-478.
  • Kaltsas, A.M., Mamolos, A.P., Tsatsarelis, C.A., Nanos, G.D., Kalburtji, K.L., 2007. Energy budget in organic and conventional olive groves. Agric. Eco. Environ. 122, 243-251.
  • Kitani, O., 1999. Energy and Biomass Engineering. CIGR, V. St Joseph, MI: ASAE.
  • Mikkola, H.J., Ahokas, J., 2010. Indirect energy input of agricultural machinery in bioenergy production. Renewable Energy. 35, 23-28.
  • Mudahar, M.S., Hignett, T.P., 1987. Energy requirements, technology and resources in fertilizer sector. Energy in Plant Nutrition and Pest Control. pp. 25-61. Amsterdam: Elsevier.
  • Ozpinar, S., 2002. A research on determination of agricultural structure and mechanisation characteristics of farms in Çanakkale Province. 8 th International Congress on Mechanization and Energy in Agriculture. October 15-17, pp.436-441, Kusadası, Turkey. 2002.
  • Özpınar, S., 2018. An assessment of biogas production potential from animal manures in Çanakkale. COMU Journal Agriculture Faculty. 6, 109-116.
  • Pimentel, D., Hurd, L.E., Belloti, A.C., Forster, M.J., Oka, I.N., Sholes, O.D., Whitman, R.J., 1973. Food production and the energy crisis. Science. 182, 443-449.
  • Rafiee, S., Mousavi-Avval, S.H., Mohammadi, A., 2010. Modelling and sensitivity analysis of energy inputs for apple production in Iran. Energy. 35, 3301-3306.
  • Rallo, L., Barranco, D., Castro-Garcia, S., Connor, D.J., Gómez del Campo, M., Rallo, P., 2013. High-density olive plantations. In J. Janick (Ed.), Horticultural Reviews. 41, 303-384.
  • Rajaeifar, M.A., Akram, A., Ghobadian, B., Rafiee, S., Heidari, M.D., 2014. Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy. 66, 139-149.
  • Romero-Gámez, M., Castro-Rodríguez, J., Suárez-Rey, E.M., 2017. Optimization of olive growing practices in Spain from a life cycle assessment perspective. J of Cleaner Pro. 149, 25-37.
  • Sánchez-Escobar, F., Coq-Huelva, D., Sanz-Cañada, J., 2018. Measurement of sustainable intensification by the integrated analysis of energy and economic flows: Case study of the olive-oil agricultural system of Estepa, Spain. J of Cleaner Pro. 463-470.
  • Singh, S., Mittal, J.P., 1992. Energy in production agriculture. New Delhi: Mittol Publications.
  • Yamane, T., 1967. Elementary Sampling Theory. New Jersey: Prentice-Hall Englewood.
  • Tombesi, A.M., Boco, M., Pill, M., Farinelli, D., 2002. Influence of canopy density on efficiency of trunk shaker olive mechanical harvesting. Acta Hort. 586, 291-294.
  • TUIK, 2018. Turkish Statistical Institute (TUIK) http://www.tuik.gov.tr/(15 September 2019).
ÇOMÜ Ziraat Fakültesi Dergisi-Cover
  • ISSN: 2147-8384
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2013
  • Yayıncı: ÇOMÜ Ziraat Fakültesi