S-metrik uzaylarda ikili tipinde daralmalar yardımıyla yeni sabit-disk sonuçları

Banach daralma koşulunu sağlamayan ve bir tek sabit noktası ya da birden fazla sabit noktası olan fonksiyon örnekleri mevcuttur. Bu durumda, metrik sabit-nokta teorisi bazı teknikler kullanılarak kapsamlı olarak genelleştirilmektedir. Bu tekniklerden biri Jaggi tipinde daralma koşulu, Dass-Gupta tipinde daralma koşulu gibi kullanılan daralma koşulunun genelleştirilmesidir. Diğer bir teknik ise b-metrik uzay, S-metrik uzay gibi kullanılan metrik uzayın genelleştirilmesidir. Son teknik ise sabit çember, sabit disk gibi verilen bir fonksiyonun sabit nokta kümesinin geometrik özelliklerinin incelenmesidir. Bu amaç için, “sabit-çember problemi” metrik sabit-nokta teorisinin geometrik bir genellemesi olarak çeşitli tekniklerle çalışılmaktadır. Bu problem ayrıca “sabit-figür problemi” olarak da düşünülebilir. Bu son problemlere bazı çözümler hem metrik uzaylar üzerinde hem de genelleştirilmiş metrik uzaylar üzerinde farklı daralmalar kullanılarak elde edilmiştir. Bu makalenin ana amacı S-metrik uzaylar üzerinde bazı sabit-disk teoremleri ispatlamaktır. Bunun için, Bunun için bilinen bazı daralma koşullarını modifiye edeceğiz. Ayrıca elde edilen bu yeni teoremleri bazı gerçekleyici örnekler ile destekleyeceğiz.

New fixed-disc results via bilateral type contractions on S-metric spaces

There are some examples of self-mappings which does not satisfy the Banach contractive condition and have a unique fixed point or more than one fixed point. In this case, metric fixed-point theory has been extensively generalized using some techniques. One of these techniques is to generalize the used contractive conditions such as the Jaggi type contractive condition, the Dass-Gupta type contractive condition etc. Another technique is to generalize the used metric spaces such as a b-metric space, an S-metric space etc. The last technique is to investigate geometric properties of the fixed-point set of a given self-mapping such as fixed circle, fixed disc etc. For this purpose, “fixed-circle problem” has been studied with various techniques as a geometrical generalization of the metric fixed-point theory. This problem was also considered as “fixed-figure problem”. Some solutions to these recent problems were obtained using different contractions both a metric space and a generalized metric space. The main purpose of this paper is to prove some fixed-disc theorems on an S-metric space. To do this, we modify the known contractive conditions. Also, the obtained new theorems are supported by some illustrative examples.

___

  • [1] Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta Mathematicae, 2, 133–181, (1922).
  • [2] Sedghi, S., Shobe, N. ve Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Matematički Vesnik, 64, 3, 258–266, (2012).
  • [3] Bakhtin, I. A., The contraction principle in quasimetric spaces, Functional Analysis, 30, 26–37, (1989).
  • [4] Sedghi, S. ve Dung, N. V., Fixed point theorems on S-metric spaces, Matematički Vesnik, 66, 1, 113–124, (2014).
  • [5] Özgür, N. Y. ve Taş, N., Some fixed-circle theorems on metric spaces, Bulletin of the Malaysian Mathematical Sciences Society, 42, 4, 1433–1449, (2019).
  • [6] Mlaiki, N., Çelik, U., Taş, N., Özgür, N. Y. ve Mukheimer, A., Wardowski type contractions and the fixed-circle problem on S-metric spaces, Journal of Mathematics, 9, (2018).
  • [7] Özgür, N. Y., Taş, N. ve Çelik, U., New fixed-circle results on S-metric spaces. Bulletin of Mathematical Analysis and Applications, 9, 2, 10–23, (2017).
  • [8] Özgür, N. Y. and Taş, N., Fixed-circle problem on S-metric spaces with a geometric viewpoint, Facta Universitatis. Series: Mathematics and Informatics, 34, 3, 459–472, (2019).
  • [9] Taş, N. ve Özgür, N., On the geometry of fixed points for self-mappings on Smetric spaces, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 69, 2, 190–198, (2020).
  • [10] Özgür, N. Y. ve Taş, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Mathematical Sciences, 11, 1, 7–16, (2017).
  • [11] Wolfram Research, Inc., Mathematica, Version 12.0, Champaign, IL (2019).
  • [12] Chen, C. M., Joonaghany, G. H., Karapınar, E. ve Khojasteh, F., On bilateral contractions, Mathematics, 7, 38, (2019).
  • [13] Taş, N., Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turkish Journal of Mathematics, 44, 4, 1330–1344, (2020).
  • [14] Özgür, N. Y. ve Taş, N., Geometric properties of fixed points and simulation functions, arXiv:2102.05417, (2021).
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-7985
  • Yayın Aralığı: 2
  • Başlangıç: 1999
  • Yayıncı: Balıkesir Üniversitesi