KNN ve Random Forest Algoritmalarının EMG Sinyallerini Sınıflandırmadaki Başarısının Karşılaştırılması

Günümüzde artan yaş ortalamasına ve yoğun iş hayatına bağlı olarak kas rahatsızlıkları da artmaktadır. Üst uzuvda kasa bağlı rahatsızlık gündelik hayatı olumsuz etkilemektedir. Kas hastalıklarının belrilenmesinde Elektromiyagrafi (EMG) kas sensörleri kullanılmaktadır. Daha doğru sonuçlar alabilmek için EMG sensörleri ile alınan verilerin sınıflandırması gerekmektedir. Yapılan bu çalışmada kas ölçüm aracı olarak kullanılan elektromiyagrafi (EMG) kas sensörleri ile üst uzuvdan veriler alınmış ve bu veriler makine öğrenmesinin sınıflandırma algoritmalarından olan ve diğer algoritmalara gore daha doğru sonuçlar veren KNN algoritması ve Rastgele Orman algoritmaları ile karşılaştırılmıştır. Kullanıcının üst uzvuna üç adet EMG kas sensörü takılmış ve mikrodenetleyici geliştirme kartı ile 0, 45 ve 90 derecelik açılarda veriler alınmıştır. Alınan veriler makine öğrenmesi algoritmaları ile eğitilmiş ve test edilmiştir. En yüksek doğruluk veren KNN ve Random Forest algoritmalarının doğruluk yüzdeleri bulunmuş ve sınıflandırmada kullanılacak algoritma seçilmiştir.

Comparison of KNN and Random Forest Algorithms in Classifying EMG Signals

Depending on the growing average age and busy work life, muscle disorders are also increasing. Disturbing use life hurts the upper limb due to casing. Electromyography (EMG) muscle sensors are used to detect muscle diseases. To obtain more accurate results, the perception of the data received with the EMG sensors is required. This evaluation was compared with electromyography (EMG) muscle sensors used as a muscle measurement tool and those taken from the upper limb and KNN explanations and Random Forest examinations, which are the predictions of machine learning in this context and give more accurate results than other effects. Three EMG muscle sensors are attached to the upper limb of the user and taken from 0o, 45o and 90o angles with the microcontroller development board. It has been read and tested with the resulting machine-learning readings. The percentages of the accuracy of the highest accuracy KNN and Random Forest locations were chosen for their assumptions and use in use.

___

  • Demirhan, Ä°. (2021). Nöromusküler hastalığa sahip bireylerde postür bozukluklarının incelenmesi ve hastalık ÅŸiddeti, kas kuvveti, fonksiyonel kapasite ve denge ile iliÅŸkisinin araÅŸtırılması.
  • Torres-Castillo, J. R., López-López, C. O., & Padilla-Castañeda, M. A. (2022). Neuromuscular disorders detection through time-frequency analysis and classification of multi-muscular EMG signals using Hilbert-Huang transform. Biomedical Signal Processing and Control, 71, 103037.
  • Bawa, A., & Banitsas, K. (2022). Design Validation of a Low-Cost EMG Sensor Compared to a Commercial-Based System for Measuring Muscle Activity and Fatigue. Sensors, 22(15), 5799.
  • Wang, X., Teng, S., Hao, C., Liu, Y., He, J., Zhang, S., & Fan, D. (2022, December). Selective ensemble learning for cross-muscle ALS disease identification with EMG signal. In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 3187-3192). IEEE.
  • Aktan, M., E., Göker, Ä°.,, AkdoÄŸan, E., and Öztürk, B., (2017) Design, implementation and performance analysis of a microcontroller based wireless electromyography device, Medical Technologies National Congress (TIPTEKNO), Trabzon, Turkey, 2017, pp. 1-4, doi: 10.1109
  • Akgün, G., Demir, U., & YILDIRIM, A. (2022). EMG Sinyallerinin HFD Analizi ve Hareket Sınıflandırılması. Computer Science, 130-136.
  • Aydın, C. (2018). Makine Öğrenmesi Algoritmaları Kullanılarak Ä°tfaiye Ä°stasyonu Ä°htiyacının Sınıflandırılması, Avrupa Bilim Ve Teknoloji Dergisi, (14), 169-175.
  • Karakoyun, M., & HacibeyoÄŸlu, M. (2014). Biyomedikal Veri Kümeleri Ä°le Makine Öğrenmesi Siniflandirma Algoritmalarinin Ä°statistiksel Olarak KarÅŸilaÅŸtirilmasi. Dokuz Eylül Ãœniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 16(48), 30-42.
  • Bozkurt, M. R. (2007). EMG Ä°ÅŸaretleri̇ni̇n Modern Yöntemlerle Öni̇şlenmesi̇ ve Siniflandirilmasi (Doctoral dissertation, Sakarya Universitesi (Turkey).
  • Kutlugün, M. A. (2017). Gözetimli makine öğrenmesi yoluyla türe göre metinden ses sentezleme (Master's thesis, Ä°stanbul Sabahattin Zaim Ãœniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar MühendisliÄŸi Anabilim Dalı).
  • KurÅŸun, A. Büyük Veri Ve SaÄŸlık Hizmetlerinde Büyük Veri Ä°ÅŸleme Araçları. (2021) Hacettepe SaÄŸlık Ä°daresi Dergisi, 24(4), 921-940.
  • Dinçer, Åž. E. (2006). Veri madenciliÄŸinde K-means algoritması ve tıp alanında uygulanması (Master's thesis, Kocaeli Ãœniversitesi, Fen Bilimleri Enstitüsü).
  • Onay, F., & Mert, A., (2020). DeÄŸiÅŸken Kuvvetli EMG Sinyallerinin Çok DeÄŸiÅŸkenli Görgül Kip Ayrışımı ile Analizi ve Sınıflandırılması. International Journal of Advances in Engineering and Pure Sciences, 32(3), 229-238.
  • Subasi, A., Yilmaz, M., & Ozcalik, H. R. (2006). Classification of EMG signals using wavelet neural network. Journal of neuroscience methods, 156(1-2), 360-367.
  • Yousefi, J., & Hamilton-Wright, A. (2014). Characterizing EMG data using machine-learning tools. Computers in biology and medicine, 51, 1-13.
  • Gokgoz, E., & Subasi, A. (2015). Comparison of decision tree algorithms for EMG signal classification using DWT. Biomedical Signal Processing and Control, 18, 138-144.
  • Côté-Allard, U., Fall, C. L., Drouin, A., Campeau-Lecours, A., Gosselin, C., Glette, K., & Gosselin, B. (2019). Deep learning for electromyographic hand gesture signal classification-using transfer learning. IEEE transactions on neural systems and rehabilitation engineering, 27(4), 760-771.
  • Meena, P., & Bansal, M. (2016). Classification of EMG Signals using SVM-KNN. Int J Adv Res Electron Commun Eng (IJARECE), 6.
  • Akgün, G., Demetgül, M., KaplanoÄŸlu, E., & ABD, M. (2013). EMG Sinyallerinin Öznitelik Çıkarımı ve Geri Yayılımlı Yapay Sinir Ağı Algoritması Ä°le Sınıflandırılması. Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26, 28.
  • Ekmekci, H. D. (2017). E-health kalkan ve Arduino kullanılarak çoklu fizyolojik iÅŸaretlerin bilgisayar ortamında görüntülenmesi (Master's thesis, Fen Bilimleri Enstitüsü).
  • Eser, C. (2018). Yüzey EMG Ölçümleri Sırasında Kaydedilen MVC (Maximum Voluntary Contraction) ile Kuvvet Ä°liÅŸkisinin Ä°ncelenmesi.
  • Aydın, E. (2020). Yüksek hassasiyetli biyo-elektronik el tasarımı (Master's thesis, Maltepe Ãœniversitesi, Lisansüstü EÄŸitim Enstitüsü).
  • KeleÅŸ, M. B., KeleÅŸ, A., & KeleÅŸ, A. (2020). Makine Öğrenmesi Yöntemleri Ä°le UçuÅŸ Fiyatlarının Tahmini. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences International Indexed & Refereed
  • EcemiÅŸ, A., Dokuz, A. Åž., & Çelik, M. ÇeÅŸitli Veri Kümeleri Ãœzerinde Veri MadenciliÄŸi Algoritmalarının Performansının DeÄŸerlendirilmesi.
  • Wang, J. T. L., Huang, Y. H., Chen, Y. H., & Lai, J. S. (2010). Classification of myoelectric signals using k-nearest neighbor classifier. Journal of Biomedical Science and Engineering, 3(1), 61-64.
  • Arslankaya, S., & Toprak, Åž. (2021). Makine öğrenmesi ve derin öğrenme algoritmalarını kullanarak hisse senedi fiyat tahmini. International Journal of Engineering Research and Development, 13(1), 178-192.
  • Zhang, L., Li, Y., Yang, D., Zhang, Y., & Wei, X. (2016). Classification of surface EMG signals using feature selection and improved random forests. Journal of Electromyography and Kinesiology, 31, 87-93
  • SekmenoÄŸlu, Ä°., Akgül, M. M., & İçer, S. (2021, November). Classification of Thermal Breast Images Using Support Vector Machines. In 2021 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.
  • Altan, E., Pehlivan, K., & KaplanoÄŸlu, E. (2019, April). Comparison of EMG based finger motion classification algorithms. In 2019 27th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: 4
  • BaÅŸlangıç: 2013
  • Yayıncı: Osman SaÄŸdıç
Sayıdaki Diğer Makaleler

Bulanık Mantık Yaklaşımı Kullanılarak Kızılırmak Nehri Aylık Ortalama Akımlarının Tahmini

Naci BÃœYÃœKKARACIÄžAN

AlexNet Mimarisi ile Muz Olgunlaşma Evrelerinin Sınıflandırılması

Selami KESLER, Abdil KARAKAN, Yüksel OĞUZ

Elektrolif Çekimiyle Üretilen Nanoliflerin İnceliğini Etkileyen Parametrelerin Taguchi Yöntemi ile Optimizasyonu

Gonca ŞİMŞEK GÜNDÜZ

Bilişim Sistemleri Gündeminde Blok Zincir Teknolojisi: Teknoloji-Örgüt-Çevre (TOE) Modeli Çerçevesinde Sistematik Bir İnceleme

Demet KÖSEOĞLU, Serkan ADA

Derin Öğrenmeye Karşı Makine Kullanarak Diyabetik Retinopati Teşhisi

Nehad RAMAHA, Shuhad IMAD

İnsansız Hava Araçlarında Dayanıklılık

Ãœmit CEVHER

Akustik Zorlamanın Propan - Metan Karışımlarının Yanma Etkisine Deneysel Araştırılması

Kuzey Emre ER, Murat TAÅžTAN

Farklı Sürelerde Uygulanan Ultrases İşleminin S. boulardii’nin Probiyotik ve Antioksidan Özelliklerine Etkisi

Hamza GOKTAS, Demet TURALİ, Cansu AĞAN, Osman SAĞDIÇ

Bazı Antidepresanların Antikanser Hedefi Olan Tioredoksin Redüktaz Enziminin İnhibitörleri Olarak Değerlendirilmesi

Ä°kranur FELEK, Ebru AKKEMÄ°K

Sinyalize Kavşaklarda Gecikmeyi Minimize Etmekte Kullanılan Optimizasyon Tekniklerinin Karşılaştırılması: PSO ve GA

Abdullah KARADAÄž, Murat ERGÃœN