Homojenleştirme Süresinin Mg-Al-Sn-Mn-La-Gd Alaşımın Aşınma Davranışı Üzerindeki Etkisinin İncelenmesi

Bu çalışmada, Mg-2.5Al-0.3Mn-0.4La-0.2Gd alaşımları düşük basınçlı kokil kalıba döküm yöntemiyle başarılı bir şekilde üretilmiştir. Döküm sonrası 350℃ de 4,8 ve 12 saat boyunca homojenleştirme ısıl işlemi uygulanmıştır. Kuru ortamda ileri-geri aşınma testleri homojenleştirilmiş numunelere 1,2 ve 3 kg yük altında uygulanmış ve hacimsel metal kaybı hesaplanmıştır. Aşınma testleri sonuçları ve mikroyapı arasındaki ilişki optik mikroskop, taramalı elektron mikroskobu ve XRD metotları kullanılarak araştırılmıştır.

Investigation of the Effect of Homogenization Time on the Wear Behavior of Mg-Al-Sn-Mn-La-Gd Alloy

In this study, Mg-2.5Al-0.3Mn-0.4La-0.2Gd alloys were successfully produced by low pressure permanent mold casting method. After casting, homogenization heat treatment was applied at 350°C for 4.8 and 12 hours. Back and forth wear tests in dry conditions were applied to homogenized samples under 1,2 and 3 kg load and volumetric metal loss was calculated. The relationship between wear test results and microstructure was investigated using optical microscope, scanning electron microscope and XRD methods.

___

  • Asl, K., Masoudi, A., & Khomamizadeh, F. (2010). The effect of different rare earth elements content on microstructure, mechanical and wear behavior of Mg–Al–Zn alloy. Materials Science and Engineering : A, 527(7-8), s. 2027-2035.
  • ASTM. (1968). Evaluation of Wear Testing. San Francisco: American Society for Testing and Materials.
  • Bu, F., Yang, Q., Guan, K., Qoi, X., Zhang, D., Sun, W., . . . Meng, J. (2016). Study on the mutual effect of La and Gd on microstructure and mechanical properties of Mg-Al-Zn extruded alloy. 688, 1241-1250.
  • Cug, H., & Ahlatci, H. (2017). Effect of Zn and Mn Additions on the Wear Resistance Cast Alloy Mg-5%Al-1%Si. Metal Science and Heat Treatment, 59(7-8), 161-167.
  • Ilanaganar, E., & Anbuselvan, S. (2018). Wear mechanisms of AZ31B magnesium alloy during dry sliding condition. Materials Today: Proceedings , 5, s. 628-635.
  • Jena, A., Naskar, N., Kumar, N., & Paliwal, M. (2020). Investigation of As-Cast and Homogenized Microstructure in Mg–6 wt% Sn–1 wt% Al Alloy: An Experimental and Modelling Study. Metals and Materials International, 1-13.
  • Kabir, A., Sanjari, M., Su, J., Jung, I.-H., & Yue, S. (2014). Effect of strain-induced precipitation on dynamic recrystallization in Mg–Al–Sn alloys. Materials Science and Engineering: A, 616, 252-259.
  • Nouri, M., Sun, X., & Li, D. (2013). Beneficial effects of yttrium on the performance of Mg–3%Al alloy during wear, corrosion and corrosive wear. 67, s. 154-163.
  • W.P. Li, H. Z. (2009). Effect of gadolinium on microstructure and rolling capability of AZ31 alloy . Journal of Alloys and Compounds, 227–232.
  • Wu, Y., Wang, Z., Liu, Y., Li, G., Xie, S., Yu, H., & Xiong, H. (2019). AZ61 and AZ61-La Alloys as Anodes for Mg-Air Battery. Journal of Materials Engineering and Performance, 28(4), 2006–2016 .
  • Yang, L., Yuhao, L., Ge, S., Jian, S., Xiaogang, L., & Huimin, L. (2018). Effect of Homogenization on Microstructure and Mechanical Property of Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y Alloy. 47(5), 1393-1398.