Elastomer Karakterizasyon Test Sistemlerinin Modellenmesi veParametrik Analizleri

Bu çalışmada, üzerinde elastomer malzeme barındıran burç gibi makine parçalarının statik ya da dinamik karakterizasyon testlerindekullanılan hidrolik eyleyicili test sistemi modellenmiştir. Burada, literatürde yer alan viskoelastik malzemeler için geliştirilmişmatematiksel modellere sistemin kütle değişkeni de ilave edilerek daha gerçekçi modeller oluşturulmuştur. Daha sonra, viskoelastikmalzeme modellerinin hidrolik test sistemi ile birleştirilmesiyle birlikte test sisteminin genel modeli elde edilmiştir. Bu kapsamda, katıve sıvı viskoelastik modeller ayrı ayrı ele alınmış ve analiz edilmiştir. Parametrik simülasyonlarla yapılan dinamik analizlerde,viskoelastik model parametrelerinin malzeme üzerinde oluşan kuvvet, hız ve yer değiştirme gibi dinamik cevaplara etkileri ortayakonmuştur. Bu çalışmadan elde edilen bilgiler ışığında, malzeme karakterizasyon testlerinden elde edilecek veriler kullanılarak testiyapılan malzmelerin dinamik model parametrelerinin kestirimi ve bunlara ait dinamik model kurulumu daha kolay yapılabilecektir.

Modelling and Simulation of Elastomer Materials Test System

In this study, hydraulic actuator test system, which is used in static or dynamic characterization tests of machine parts such as bushingwith elastomer material, is modeled. Here, more realistic models were created by adding the mass variable of the system to themathematical models developed for viscoelastic materials in the literature. Then, the general model of the test system was obtained bycombining the viscoelastic material models with the hydraulic test system. In this context, solid and liquid viscoelastic models arehandled and analyzed separately. In dynamic analysis with parametric simulations, the effects of viscoelastic model parameters ondynamic responses such as force, velocity and displacement on the material have been revealed. In the light of the information obtainedfrom this study, using the data obtained from the material characterization tests, it will be easier to estimate the dynamic modelparameters of the tested materials and to set up their dynamic models.

___

  • Williams, M.L. (1964), Structural Analysis of Viscoelastic Materials, AIAA Journal, 5(2), 785-808.
  • Popov, V. L., Hess, M., ve Willert, E. (2019), Handbook of Contact Mechanics Exact Solutions of Axisymmetric Contact Problems, Berlin: Springer.
  • Christensen, R. M. (1982), Theory of Viscoelasticity Second Edition, New York: Dover Publications.
  • Phan-Thien, N., (2013), Understanding Viscoelasticity An Introduction to Rheology Second Edition, New York: Springer.
  • Mainardi, F., (2010), Fractional Calculus and Waves in Linear Viscoelasticity, London: Imperial College Press.
  • Flügge W. (1975), Viscoelasticity: Second Revised Edition, Berlin: Springer-Verlag.
  • Ferry, J. D., (1980), Viscoelastic Properties of Polymers, New York: Jhon Wiley & Sons.
  • Clamroth, R. (1981), Determination of Viscoelastic Properties by Dynamic Testing, Polymer Testing, 2, 263-286.
  • Dindorf, R., Wos, P., (2019), Force and Position Control of The Integrated Electro-Hydraulic Servo-Drive, IEEE.
  • Tamburrano, P., Plummer, A. R., Distaso, E., Amirante, R. (2019), A Review of Electro-Hydraulic Servovalve Research and Development, International Journal of Fluid Power, 20, 1, 53-98.
  • MOOG Industrial Controls Division, (2016), Electrohydraulic Valves – A Technical Look[Broşür], http://www.moogvalves.com/Global/FileLib/EH/MoogServoValves-Techn_Look-Overview-en.pdf.
  • Dautsches Institut Fur Normung (1990), Determination of Viscoelastic Properties of EIastomers(DIN Standart No. 53513:1990-03), https://www.beuth.de/de/norm/din53513/1519202.
  • Menard, K. P. (1999), Dynamic Mechanical Analysis A Practical Introduction, London: CRC Press.
  • Rouleau, L., Pirk, R., Pluymers, B., Desmet, W. (2015), Characterization and Modeling of the Viscoelastic Behavior of a Self-Adhesive Rubber Using Dynamic Mechanical Analysis Tests, J. Aerosp, 2(7), 200-208.
  • Bobryshev, A. N., Lakhno, A. V., Voronov, P. V., Galimov, E. R., Sharafutdinov, R. F., Galimova, N. Y., (2015), New approaches for evaluating rheological models in composites, Materials Science and Engineering, 86 (2015) 012001.
  • Brown, R., (2018), Physical Test Methods for Elastomers, Cham: Springer.
  • Manring, N. D., Fales, R. C., (2020), Hydraulic Control Systems Second Edition, John Wiley & Sons
  • Rydberg, K. E. (2016), Hydraulic Servo Systems Dynamic Properties and Control, Linköping University: Department of Management and Engineering.
  • MOOG (2018), Servo Valves Pilot Operated Flow Control Valve with Analog Interface G631/631[Broşür], https://www.moog.com .
  • Vietor, A., Lukjanec, D., Balint, Z. (2016), Detection of Hydraulic Cylinder Leakage, Aalborg Universitet, Master Thesis