Comparative Growth Performance of Genetically Male, Sex-Reversed, and Mixed-Sex Nile Tilapia (Oreochromis niloticus) Reared in Earthen Ponds in Sagana, Kenya

Comparative Growth Performance of Genetically Male, Sex-Reversed, and Mixed-Sex Nile Tilapia (Oreochromis niloticus) Reared in Earthen Ponds in Sagana, Kenya

Nile tilapia (Oreochromis niloticus) culture has been faced by challenges of prolific breeding and early maturity of mixed-sex tilapia that can be solved by the culture of all-male tilapia. A study was conducted to compare the growth performance, survival and condition factor of genetically male tilapia (GMT), sex-reversed tilapia (SRT) and mixed-sex tilapia (MST) cultured in earthen ponds. Fingerlings of initial weights ranging from 0.41 to 0.91 g for GMT, SRT and MST were stocked in 150 m2 earthen ponds in triplicates at 3 fish m-2 and fed on a 35% crude protein diet. After 180 days culture period, the final body weights of SRT (202.82±7.30 g) was significantly higher than GMT (174.34±3.71 g) and MST (148.06±4.60 g) (P0.05). The condition factor of all the fish was above 1 and was significantly different between the groups (P

___

  • Adamneh, D. (2013). Comparative growth performance of monosex and mixed sex Nile tilapia (Oreochromis niloticus L.) in pond culture system at Sebeta, Ethiopia. International Journal of Aquaculture, 3(7), 30–34. https://doi.org/10.5376/ija.2013.03.0007
  • Allison, E. H. (2011). Aquaculture, fisheries, poverty and food Security. WorldFish Center Working Paper. Penang, Malaysia: WorldFish Center. Retrieved from http://pubs.iclarm.net/resource_centre/WF_2971.pdf
  • Amoussou, T. O., Abdou Karim, I. Y., Dayo, G. K., Kareem, N., Toko, I. I., Chikou, A., & Toguyéni, A. (2019). An insight into advances in fisheries biology, genetics and genomics of African tilapia species of interest in aquaculture. Aquaculture Reports, 14, 100188. https://doi.org/10.1016/j.aqrep.2019.100188
  • Ansah, Y. B., Frimpong, E. A., & Hallerman, E. M. (2014). Genetically-improved tilapia strains in Africa: Potential benefits and negative impacts. Sustainability, 6(6), 3697–3721. https://doi.org/https://doi.org/10.3390/su6063697
  • Azaza, M. S., Dhraïef, M. N., & Kraïem, M. M. (2008). Effects of water temperature on growth and sex ratio of juvenile Nile tilapia, Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology, 33(2), 98–105. https://doi.org/10.1016/j.jtherbio.2007.05.007
  • Beardmore, J., Mair, G., & Lewis, R. (2001). Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture, 197(1–4), 283–301. https://doi.org/10.1016/S0044-8486(01)00590-7
  • Béné, C., Arthur, R., Norbury, H., Allison, E. H., Beveridge, M., Bush, S., Campling, L., Leschen, W., Little, D., Squires, D., Thilsted, S. H., Troell, M., & Williams, M. (2016). Contribution of fisheries and aquaculture to food security and poverty reduction: Assessing the current evidence. World Development, 79, 177–196. https://doi.org/10.1016/j.worlddev.2015.11.007
  • Bhasin, S., Woodhouse, L., & Storer, T. (2001). Proof of the effect of testosterone on skeletal muscle. Journal of Endocrinology, 170(1), 27–38. https://doi.org/10.1677/joe.0.1700027
  • Boyd, C. E., & Tucker, C. S. (1998). Pond Aquaculture Water Quality Management. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-5407-3
  • Celik, I., Guner, Y., & Celik, P. (2011). Effect of orally administered 17α-Methyltestosterone at different doses on the sex reversal of the Nile tilapia (Oreochromis niloticus, Linneaus 1758). Journal of Animal and Veterinary Advances, 10(7), 853–857. https://doi.org/10.3923/javaa.2011.853.857
  • Chakraborty, S. B., Mazumdar, D., Chatterji, U., & Banerjee, S. (2011). Growth of mixed sex and monosex Nile tilapia in different culture systems. Turkish Journal of Fisheries and Aquatic Sciences, 11(1), 133–140. https://doi.org/10.4194/trjfas.2011.0117
  • Chakraborty, S. B., & Banerjee, S. (2012). Comparative growth performance of mixed-sex and monosex Nile tilapia at various stocking densities during cage culture. Recent Research in Science and Technology 2012, 4(11), 46–50.
  • Charo-Karisa, H., Komen, H., Rezk, M. A., Ponzoni, R. W., van Arendonk, J. A. M., & Bovenhuis, H. (2006). Heritability estimates and response to selection for growth of Nile tilapia (Oreochromis niloticus) in low-input earthen ponds. Aquaculture, 261(2), 479–486. https://doi.org/10.1016/j.aquaculture.2006.07.007
  • Chen, J., Fan, Z., Tan, D., Jiang, D., & Wang, D. (2018). A review of genetic advances related to sex control and manipulation in tilapia. Journal of the World Aquaculture Society, 49(2), 277–291. https://doi.org/10.1111/jwas.12479
  • Chu, L., Phillips, M. J., Chan, C. Y., Tran, N., Kefi, A. S., & Genschick, S. (2018). Fish supply and demand for food security in Sub-Saharan Africa: An analysis of the Zambian fish sector. Marine Policy, 99, 343–350. https://doi.org/10.1016/j.marpol.2018.11.009
  • El-Greisy, Z. A., & El-Gamal, A. E. (2012). Monosex production of tilapia, Oreochromis niloticus using different doses of 17α-methyltestosterone with respect to the degree of sex stability after one year of treatment. Egyptian Journal of Aquatic Research, 38(1), 59–66. https://doi.org/10.1016/j.ejar.2012.08.005
  • El-Sayed, A.-F. M., El-Ghobashy, A., & Al-Amoudi, M. (1996). Effects of pond depth and water temperature on the growth, mortality and body composition of Nile tilapia, Oreochromis niloticus (L.). Aquaculture Research, 27(9), 681–687. https://doi.org/10.1046/j.1365-2109.1996.00776.x
  • FAO. (2018). The state of world fisheries and aquaculture 2018 - Meeting the sustainable development goals. Rome, Italy: FAO, Fisheries Department. Retrieved from www.fao.org/documents/card/en/c/I9540EN
  • Fitzsimmons, K. M. (2000). Tilapia: the most important aquaculture species of the 21st century. In Proceedings from the Fifth International Symposium on Tilapia Aquaculture (pp. 3–8). Rio de Janeiro, Brazil.
  • Froese, R. (2006). Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal of Applied Ichthyology, 22(4), 241–253. https://doi.org/10.1111/j.1439-0426.2006.00805.x
  • Githukia, C. M., Ogello, E. O., Kembenya, E. M., Achieng, A. O., Obiero, K. O., & Munguti, J. M. (2015). Comparative growth performance of male monosex and mixed sex Nile tilapia (Oreochromis niloticus L.) reared in earthen ponds. Croatian Journal of Fisheries, 73(1), 20–25. https://doi.org/10.14798/73.1.788
  • Islam, Z. M., Sarder, R. I., & Akhand, R. I. (2015). Growth performance of genetically male tilapia derived from YY male, sex reversed male tilapia and mixed sex tilapia of Oreochromis niloticus in earthen pond aquaculture system in Bangladesh. International Journal of Fisheries and Aquatic Studies, 2(3), 186–191. Retrieved from http://www.fisheriesjournal.com/vol2issue3/Pdf/47.1.pdf
  • Kamaruzzaman, N., Nguyen, N. H., Hamzah, A., & Ponzoni, R. W. (2009). Growth performance of mixed sex, hormonally sex reversed and progeny of YY male tilapia of the GIFT strain, Oreochromis niloticus. Aquaculture Research, 40(6), 720–728. https://doi.org/10.1111/j.1365-2109.2008.02152.x
  • Khalil, W. K. B., Hasheesh, W. S., Marie, M. A. S., Abbas, H. H., & Zahran, E. A. (2011). Assessment of the impact of the 17α-methyltestosterone hormone on growth, hormone concentration, molecular and histopathological changes in muscles and testis of Nile tilapia, Oreochromis niloticus. Life Science Journal, 8(3), 329–343.
  • KMFRI. (2017). Kenya’s Aquaculture Brief: status, trends, challenges, and future Outlook. Mombasa, Kenya, 12pp.
  • Kumar, G., & Engle, C. R. (2016). Technological advances that led to growth of shrimp, salmon, and tilapia farming. Reviews in Fisheries Science and Aquaculture, 24(2), 136–152. https://doi.org/10.1080/23308249.2015.1112357
  • Liti, D., Cherop, L., Munguti, J., & Chhorn, L. (2005). Growth and economic performance of Nile tilapia (Oreochromis niloticus L.) fed on two formulated diets and two locally available feeds in fertilized ponds. Aquaculture Research, 36(8), 746–752. https://doi.org/10.1111/j.1365-2109.2005.01265.x
  • Lugert, V., Thaller, G., Tetens, J., Schulz, C., & Krieter, J. (2016). A review on fish growth calculation: multiple functions in fish production and their specific application. Reviews in Aquaculture, 8(1), 30–42. https://doi.org/10.1111/raq.12071
  • Mair, G.C., & Little, D. C. (1991). Population control in farmed tilapias. Naga, the ICLARM Quarterly, 14(3), 8-13. Retrieved from http://www.worldfishcenter.org/Naga/na_2834.pdf
  • Mair, Graham C., Abucay, J. S., Beardmore, J. A., & Skibinski, D. O. F. (1995). Growth performance trials of genetically male tilapia (GMT) derived from YY-males in Oreochromis niloticus L.: On station comparisons with mixed sex and sex reversed male populations. Aquaculture, 137(1–4), 313–323. https://doi.org/10.1016/0044-8486(95)01110-2
  • Mair, G C, Abucay, J. S., Skibinski, D. O. F., Abella, T. A., & Beardmore, J. A. (1997). Genetic manipulation of sex ratio for the large-scale production of all-male tilapia, Oreochromis niloticus. Canadian Journal of Fisheries and Aquatic Sciences, 54(1991), 396–404
  • Mamun, A., Sarder, R. I., & Rahman, M. M. (2016). Growth performance of genetically male (GMT) and hormone induced sex reversed male tilapia (Oreochromis niloticus L.) in earthen pond aquaculture system. Bangladesh Journal of Zoology, 38(2), 163–169.
  • Mateen, A., & Ahmed, I. (2007). Effect of androgen on sex reversal and growth of Nile tilapia (Oreochromis niloticus). Pakistan Journal of Agricultural Sciences, 44(2), 272–276.
  • Mbiru, M., Limbu, S. M., Chenyambuga, S. W., Lamtane, H. A., Tamatamah, R., Madalla, N. A., & Mwandya, A. W. (2016). Comparative performance of mixed-sex and hormonal-sex-reversed Nile tilapia Oreochromis niloticus and hybrids (Oreochromis niloticus × Oreochromis urolepis hornorum) cultured in concrete tanks. Aquaculture International, 24(2), 557–566. https://doi.org/10.1007/s10499-015-9946-z
  • Mbugua, M. H. (2008). Aquaculture in Kenya; status, challenges and opportunities. Nairobi, Kenya, 10pp. Retrieved from https://www.oceandocs.org/handle/1834/7367
  • Ngugi, C. C., Bowman, J. R., & Omolo, B. (2007). A new guide to fish farming in Kenya. Oregon, USA: Aquaculture Collaborative Research Support Program (ACRSP) Aquaculture CRSP Management Office, Oregon University, Oregon USA. 100pp. Retrieved from http://pdacrsp.oregonstate.edu/pubs/featured_titles/Kenya_Manual.pdf
  • Nyonje, B. M., Opiyo, M. A., Orina, P. S., Abwao, J., Wainaina, M., & Charo-Karisa, H. (2018). Current status of freshwater fish hatcheries, broodstock management and fingerling production in the Kenya aquaculture sector. Livestock Research for Rural Development, 30(1).
  • Opiyo, M. A., Marijani, E., Muendo, P., Odede, R., Leschen, W., & Charo-Karisa, H. (2018). A review of aquaculture production and health management practices of farmed fish in Kenya. International Journal of Veterinary Science and Medicine, 6(2), 141–148. https://doi.org/10.1016/j.ijvsm.2018.07.001
  • Phelps, R. P., & Popma, T. J. (2000). Sex reversal of tilapia. In B. A. Costa- Pierce & J. E. Rakocy (Eds.), Tilapia Aquaculture in the Americas (pp. 34–59). Baton Rouge, Louisiana, USA: The World Aquaculture Society.
  • Singh, E., Saini, V. P., Sharma, O. P., Ojha, M. L., & Jain, H. K. (2017). Comparative growth performance of monosex and mixed sex red tilapia (Oreochromis niloticus L.). Journal of Entomology and Zoology Studies, 5(6), 1073–1075.
  • Sogard, S. M. (1997). Size-selective mortality in the juvenile stage of teleost fishes: A review. Bulletin of Marine Science, 60(3), 1129–1157.
  • Rakocy, J. E. (1989). Tank Culture of Tilapia (Issue 282). Southern Regional Aquaculture Center, Texas USA, 4pp. https://cals.arizona.edu/azaqua/extension/Classroom/pdffiles/282fs.pdf
  • Toguyeni, A., Fauconneau, B., Boujard, T., Fostier, A., Kuhn, E. R., Mol, K. A., & Baroiller, J. F. (1997). Feeding behaviour and food utilisation in tilapia, Oreochromis niloticus: Effect of sex ratio and relationship with the endocrine status. Physiology and Behavior, 62(2), 273–279. https://doi.org/10.1016/S0031-9384(97)00114-5