ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI

Amaç: Yaygın hastane enfeksiyon ajanı olan Pseudomonas aeruginosa (P. aeruginosa)’ nın tedavisi amacıyla antiviral ilaçlar ile antibiyotiklerin kombinasyon olarak kullanılmaları sonucunda oluşan sinerjistik etkinliğinin araştırılması amaçlanmıştır.

INVESTIGATION OF THE SYNERGISTIC EFFECT ON THE HOSPITAL INFECTION AGENT PSEUDOMONAS AERUGINOSA OF ANTIVIRAL DRUGS

Objective: It was aimed to investigate the synergistic efficacy of antiviral drugs and antibiotics in combination for the treatment of Pseudomonas aeruginosa (P. aeruginosa), which is a common nosocomial infection agent.

___

  • 1. Mayrand, D., Laforce-Lavoie, A., Larochelle, S., Langlois, A., Genest, H., Roy, M., Moulin, V. J. (2012). Angiogenic properties of myofibroblasts isolated from normal human skin wounds. Angiogenesis, 15(2), 199-212. [CrossRef]
  • 2. Gales, A.C., Menezes, L.C., Silbert, S., Sader, H.S. (2003). Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. Journal of Antimicrobial Chemotherapy, 52(4), 699-702. [CrossRef]
  • 3. Taşbent, F.E., Doğan M., Feyzioğlu, B., Baykan, M. (2013). Çeşitli klinik örneklerden izole edilen Pseudomonas türlerinin antibiyotiklere direnci. Türk Mikrobiyoloji Cemiyeti Dergisi, 43(4), 138-43. [CrossRef]
  • 4. Lee, J.Y., Chung, E.S., Na, I.Y., Kim, H., Shin, D., Ko, K.S. (2014). Development of colistin resistance in pmrA-, phoP-, parR-and cprR-inactivated mutants of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 69(11), 2966-2971. [CrossRef]
  • 5. Kollef, M.H. (2006). Is antibiotic cycling the answer to preventing the emergence of bacterial resistance in the intensive care unit? Clinical infectious diseases, 43(Supplement_2), S82-S88. [CrossRef]
  • 6. Henwood, C.J., Livermore, D.M., James, D., Warner, M., Pseudomonas Study Group, T. (2001). Antimicrobial susceptibility of Pseudomonas aeruginosa: Results of a UK survey and evaluation of the British Society for Antimicrobial Chemotherapy disc susceptibility test. Journal of Antimicrobial Chemotherapy, 47(6), 789-799. [CrossRef]
  • 7. Ak, S., Yıldız, F., Gündüz, A., Köroğlu, M. (2016). Pseudomonas aeruginosa suşlarının antibiyotiklere duyarlılıklarının vitek 2 otomatize sistemi ile değerlendirilmesi. Gazi Medical Journal, 27(2), 62-64. [CrossRef]
  • 8. Özünel L, Boyacıoğlu Z.İ., Güreser A.S., Taylan Ö.A.. (2014). Çorum Eğitim ve Araştırma Hastanesi’nde derin trekeal aspirat örneklerinden izole edilen Pseudomonas aeruginosa ve Acinetobacter baumannii suşlarının antimikrobiyal duyarlılık paternlerinin değerlendirilmesi. Turk Hijyen ve Deneysel Biyoloji Dergisi, 271, 81-88.
  • 9. Şenol A., Çelik İ. (2021). Yoğun bakım ünitelerinden izole edilen çok ilaca dirençli Pseudomonas aeruginosa ve Acinetobacter baumannii suşlarına karşı çeşitli antimikrobiyallerin in vitro aktiviteleri. Flora, 26(1), 96-103. [CrossRef]
  • 10. Evans, M.E., Feola, D.J., Rapp, R.P. (1999). Polymyxin B sulfate and colistin: Old antibiotics for emerging multiresistant gram-negative bacteria. Annals of Pharmacotherapy, 33(9), 960-967. [CrossRef]
  • 11. Gales, A.C., Reis, A.O., Jones, R.N. (2001). Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: Review of available interpretative criteria and quality control guidelines. Journal of Clinical Microbiology, 39(1), 183-190. [CrossRef]
  • 12. Akova M. (2008). Sulbactam-containing β-lactamase inhibitor combinations. Clinical Microbiology and Infection, 14, 185-188. [CrossRef]
  • 13. Nakae T., Saito K., Nakajima, A. (2000). Effect of sulbactam on anti-pseudomonal activity of β-lactam antibiotics in cells producing various levels of the MexAB-OprM efflux pump and β-lactamase. Microbiology and immunology, 44(12), 997-1001.
  • 14. Sardushkin, M.V., Shiryaeva, Y.K., Donskaya, L.,Vifor, R. (2020). Colloid-Chemical and Antimicrobial Properties of Ribavirin Aqueous Solutions. Systematic Reviews in Pharmacy, 11(12), 2050-2053.
  • 15. Sanders, J.M., Monogue, M.L., Jodlowski, T.Z., Cutrell, J.B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. Jama, 323(18), 1824-1836. [CrossRef]
  • 16. Kadam, R.U., Wilson, I.A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences, 114(2), 206-214. [CrossRef]
  • 17. ISO [2006] ISO 20776-1 Clinical laboratory testing and in vitro diagnostic test systems - Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices - Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases.
  • 18. Hashemi, A.B., Nakhaei Moghaddam, M., Forghanifard, M.M., Yousefi, E. (2021). Detection of blaOXA-10 and blaOXA-48 Genes in Pseudomonas aeruginosa Clinical Isolates by Multiplex PCR. Journal of Medical Microbiology and Infectious Diseases, 9(3), 142-147.
  • 19. Verma, N., Prahraj, A., Mishra, B., Behera, B., Gupta, K. (2019). Detection of carbapenemase-producing Pseudomonas aeruginosa by phenotypic and genotypic methods in a tertiary care hospital of East India. Journal of Laboratory Physicians, 11(04), 287-291. [CrossRef]
  • 20. Timurkaynak, F., Can, F., Azap, Ö. K., Demirbilek, M., Arslan, H., Karaman, S.Ö. (2006). In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. International Journal of Antimicrobial Agents, 27(3), 224-228. [CrossRef]
  • 21. Sasidharan, N.K., Sreekala, S.R., Jacob, J., Nambisan, B. (2014). In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea. BioMed Research International, 2014. [CrossRef]
  • 22. Witzany, C., Bonhoeffer, S., Rolff, J. (2020). Is antimicrobial resistance evolution accelerating? PLoS pathogens, 16(10), e1008905. [CrossRef]
  • 23. Czaplewski, L., Bax, R., Clokie, M., Dawson, M., Fairhead, H., Fischetti, V.A., Silverman, J..Hutchings, M.I., Truman, A.W., Wilkinson, B. (2019). Alternatives to antibiotics–a pipeline portfolio Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72-80.
  • 24. Dickey, S.W., Cheung, G.Y., Otto, M. (2017). Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nature Reviews Drug Discovery, 16(7), 457-471. [CrossRef]
  • 25. Nadeem, S.F., Gohar, U.F., Tahir, S.F., Mukhtar, H., Pornpukdeewattana, S., Nukthamna, P., Massa, S. (2020). Antimicrobial resistance: More than 70 years of war between humans and bacteria. Critical Reviews in Microbiology, 46(5), 578-599. [CrossRef]
  • 26. Tagliabue, A., Rappuoli, R. (2018). Changing priorities in vaccinology: Antibiotic resistance moving to the top. Frontiers in İmmunology, 9, 1068. [CrossRef]
  • 27. Lu, L., Li, M., Yi, G., Liao, L., Cheng, Q., Zhu, J., Zeng, M. (2021). Screening strategies for quorum sensing inhibitors in combating bacterial infection. Journal of Pharmaceutical Analysis, 12(1), 1-14. [CrossRef]
  • 28. Kalia, V.C., Purohit, H.J. (2011). Quenching the quorum sensing system: Potential antibacterial drug targets. Critical Reviews in Microbiology, 37(2), 121-140. [CrossRef]
  • 29. Zhao, K., Li, W., Li, J., Ma, T., Wang, K., Yuan, Y., Zhou, X. (2019). TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nature Microbiology, 4(3), 459-469. [CrossRef]
  • 30. Kumar, L., Brenner, N., Brice, J., Klein-Seetharaman, J., Sarkar, S.K. (2021). Cephalosporins interfere with quorum sensing and improve the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection. Frontiers in Microbiology, 12, 598498. [CrossRef]
  • 31. Yuan, Y., Yang, X., Zeng, Q., Li, H., Fu, R., Du, L., Zhao, K. (2022). Repurposing Dimetridazole and Ribavirin to disarm Pseudomonas aeruginosa virulence by targeting the quorum sensing system. Frontiers in Microbiology, 13, 978502. [CrossRef]
  • 32. Fleitas Martínez, O., Cardoso, M.H., Ribeiro, S.M., Franco, O.L. (2019). Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Frontiers in Cellular and Infection Microbiology, 9, 74. [CrossRef]
  • 33. Di Bonaventura, G., Lupetti, V., De Fabritiis, S., Piccirilli, A., Porreca, A., Di Nicola, M., Pompilio, A. (2022). Giving drugs a second chance: antibacterial and antibiofilm effects of ciclopirox and ribavirin against cystic fibrosis Pseudomonas aeruginosa strains. International Journal of Molecular Sciences, 23(9), 5029. [CrossRef]
  • 34. She, P., Wang, Y., Luo, Z., Chen, L., Tan, R., Wang, Y., Wu, Y. (2018). Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa. Microbiology Open, 7(1), e00545. [CrossRef]
  • 35. Gupta, A.K., Skinner, A.R. (2003). Ciclopirox for the treatment of superficial fungal infections: A review. International Journal of Dermatology, 42(S1), 3-9. [CrossRef]
  • 36. Bergeron, C., Cantin, A.M. (2019). Cystic fibrosis: Pathophysiology of lung disease. In Seminars in Respiratory and Critical Care Medicine Thieme Medical Publishers, 40(06), 715-726. [CrossRef]
  • 37. Chmiel, J.F., Berger, M., Konstan, M.W. (2002). The role of inflammation in the pathophysiology of CF lung disease. Clinical Reviews in Allergy & İmmunology, 23(1), 5-27. [CrossRef]
  • 38. Leneva, I.A., Falynskova, I.N., Leonova, E I., Fedyakina, I.T., Makhmudova, N.R., Osipova, E.A., Zverev, V.V. (2014). Umifenovir (Arbidol) efficacy in experimental mixed viral and bacterial pneumonia of mice. Антибиотики и химиотерапия, 59(9-10), 17-24.
  • 39. McCullers, J.A. (2011). Preventing and treating secondary bacterial infections with antiviral agents. Antiviral Therapy, 16(2), 123-135. [CrossRef]
  • 40. Noguchi, J.K., Gill, M.A. (1988). Sulbactam: A beta-lactamase inhibitor. Clinical Pharmacy, 7(1), 37-51.
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: 3
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

YENİ PİRİMİDO[1,2-a]PİRİMİDİN BİLEŞİKLERİNİN ANTİOKSİDAN VE ANTİBAKTERİYAL ÖZELLİKLERİNİN KARŞILAŞTIRILMASI

Duygu BAYRAMOĞLU, Merve DEMİRBÜGEN ÖZ, Merve Eylül KIYMACI

KULLANILMIŞ RUJ VE MASKARALARDA MİKROBİYOLOJİK KONTAMİNASYONUNUN ARAŞTIRILMASI

Kübra YAZICI, Müjde ERYILMAZ

LEVOTİROKSİN SODYUMUN KONTROLLÜ SALIMI İÇİN IN-SITU PARENTERAL BİYOBOZUNUR İMPLANT FORMÜLASYONU VE DEĞERLENDİRİLMESİ

Manish GOYANİ, Meghraj SURYAWANSHİ, Ridhdhesh JIVAWALA

ENTEGRE BİYOİNFORMATİK ANALİZ İLE KRONİK LENFOSİTİK LÖSEMİDE HEDEF GENLERİN VE YOLAKLARIN BELİRLENMESİ

Buket ALTINOK GÜNEŞ

PİYASADA BULUNAN BAZI UÇUCU YAĞLARIN FARMAKOPE UYGUNLUĞUNUN DEĞERLENDİRİLMESİ

Burçin ERGENE, Damla HADDUR, Melek KARAASLAN, Hediye Kamuran İLERİ ÖZLER, Gülçin SALTAN İŞCAN

PROPOLİS EKSTRAKTI BİTKİSEL YAĞLARIN OKSİDATİF STABİLİTESİNİ İYİLEŞTİRMEK İÇİN DOĞAL BİR ANTİOKSİDAN OLARAK ÖNERİLEBİLİR

Ümit ERDOĞAN

THE EFFECTS OF MELATONIN, FLUOXETINE AND THEIR COMBINATIONS ON STRESS INDUCED BEHAVIORAL AND COGNITIVE IMPAIRMENTS IN MICE

Merve İNCİ ÇAMÇİ, Meral ERDİNÇ, İlker KELLE, Emre UYAR, Levent ERDİNÇ

SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ

Hakan BALCI, Zehra Özden ERDOĞAN, Alperen ÖZDEMİR

ECZACI VE ECZANE PERSONELİNDE STAPHYLOCOCCUS AUREUS BURUN TAŞIYICILIĞI

Halil BAL, Sulhiye YILDIZ

POTANSİYEL FAAH İNHİBİTÖRÜ OLARAK BAZI ARİLHİDRAZON TÜREVİ BİLEŞİKLERİN TASARIMI VE SENTEZİ

Zehra Tuğçe GÜR MAZ, Sümeyye TURANLI, H. Burak CALISKAN