Fractional trapezium type inequalities for twice differentiable preinvex functions and their applications
Fractional trapezium type inequalities for twice differentiable preinvex functions and their applications
Trapezoidal inequalities for functions of divers natures are useful in numericalcomputations. The authors have proved an identity for a generalized integraloperator via twice differentiable preinvex function. By applying the established identity, the generalized trapezoidal type integral inequalities have beendiscovered. It is pointed out that the results of this research provide integralinequalities for almost all fractional integrals discovered in recent past decades.Various special cases have been identified. Some applications of presented results to special means have been analyzed. The ideas and techniques of thispaper may stimulate further research.
___
- [1] Aslani, S.M. Delavar, M.R. and Vaezpour, S.M. (2018). Inequalities of Fej´er type related to generalized convex functions with applications. Int. J. Anal. Appl., 16(1), 38–49.
- [2] Chen, F.X. and Wu, S.H. (2016). Several complementary inequalities to inequalities of Hermite–Hadamard type for s–convex functions. J. Nonlinear Sci. Appl., 9(2), 705–716.
- [3] Chu, Y.M. Khan, M.A. Khan, T.U. and Ali, T. (2016). Generalizations of Hermite– Hadamard type inequalities for MT–convex functions. J. Nonlinear Sci. Appl., 9(5), 4305– 4316.
- [4] Dahmani, Z. (2010). On Minkowski and Hermite–Hadamard integral inequalities via fractional integration. Ann. Funct. Anal., 1(1), 51–58.
- [5] Delavar, M.R. and Dragomir, S.S. (2017). On η–convexity. Math. Inequal. Appl., 20, 203– 216.
- [6] Delavar, M.R. and De La Sen, M. (2016). Some generalizations of Hermite–Hadamard type inequalities. SpringerPlus, 5(1661).
- [7] Dragomir, S.S. and Agarwal, R.P. (1998). Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula. Appl. Math. Lett., 11(5), 91–95.
- [8] Khan, M.A. Chu, Y.M. Kashuri, A. Liko, R. and Ali, G. (2018). New Hermite–Hadamard inequalities for conformable fractional integrals. J. Funct. Spaces, Article ID 6928130, 9.
- [9] Khan, M.A. Khurshid, Y. and Ali, T. (2017). Hermite–Hadamard inequality for fractional integrals via η–convex functions. Acta Math. Univ. Comenianae, 79(1), 153–164.
- [10] Liu, W.J. (2014). Some Simpson type inequalities for h–convex and (α, m)–convfunctions. J. Comput. Anal. Appl., 16(5), 1005–1012.
- [11] Liu, W. Wen, W. and Park, J. (2016). Hermite–Hadamard type inequalities for MT–convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl., 9, 766–777.
- [12] Mihai, M.V. (2013). Some Hermite– Hadamard type inequalities via Riemann– Liouville fractional calculus. Tamkang J. Math, 44(4), 411–416.
- [13] Mubeen, S. and Habibullah, G.M. (2012). k– Fractional integrals and applications. Int. J. Contemp. Math. Sci., 7, 89–94.
- [14] Noor, M.A. Noor, K.I. Awan, M.U. and Khan, S. (2014). Hermite–Hadamard inequalities for s–Godunova–Levin preinvex functions. J. Adv. Math. Stud., 7(2), 12–19.
- [15] Omotoyinbo, O. and Mogbodemu, A. (2014). Some new Hermite–Hadamard integral inequalities for convex functions. Int. J. Sci. Innovation Tech., 1(1), 1–12.
- [16] Ozdemir, M.E. Dragomir, S.S. and Yildiz, C. ¨ (2013). The Hadamard’s inequality for convex function via fractional integrals. Acta Mathematica Scientia, 33(5), 153–164.
- [17] Sarikaya, M.Z. and Ertuˇgral, F. (2020). On the generalized Hermite–Hadamard inequalities. Annals of the University of Craiova– Mathematics and Computer Science Series, in press.
- [18] Sarikaya, M.Z. and Yildirim, H. (2007). On generalization of the Riesz potential. Indian Jour. of Math. and Mathematical Sci., 3(2), 231–235.
- [19] Set, E. Noor, M.A. Awan, M.U. and G¨ozpinar, A. (2017). Generalized Hermite– Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl., 169, 1–10.
- [20] Wang, H. Du, T.S. and Zhang, Y. (2017). k– fractional integral trapezium–like inequalities through (h, m)–convex and (α, m)–convex mappings. J. Inequal. Appl., 2017(311), 20.
- [21] Weir, T. and Mond, B. (1988). Preinvex functions in multiple objective optimization. J. Math. Anal. Appl., 136, 29–38.
- [22] Zhang, X.M. Chu, Y.M. and Zhang, X.H. (2010). The Hermite–Hadamard type inequality of GA–convex functions and its applications. J. Inequal. Appl., Article ID 507560, 11.
- [23] Zhang, Y. Du, T.S. Wang, H. Shen, Y.J. and Kashuri, A. (2018). Extensions of different type parameterized inequalities for generalized (m, h)–preinvex mappings via k–fractional integrals. J. Inequal. Appl., 2018(49), 30.