Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek

Toros Kuşağı içerisinde Kırkkavak ve Ecemiş fayları arasında kalan Beyşehir-Hoyran Ofiyoliti, Jura sonu-Kretase başında kapanmaya başlayan Neotetis Okyanusu’na ait önemli kayıtlara sahiptir. Beyşehir-Hoyran Ofiyoliti inceleme alanında tektonitler (harzburjit, dünit), kümülatlar (gabro, piroksenolit,pegmatoitik gabro) ve ofiyolit tabanı metamorfiklerinden (amfibolit) oluşan bir istif sunmaktadır.Tektonitler ofiyolit istifi içerisinde hacimsel olarak en önemli bölümünü oluşturmaktadır. Genel olarakharzburjitlerden oluşan tektonitler yer yer dünitik ve kromitik seviyeler içermektedir. Foliyasyon-lineasyon gösteren tektonitler, kristal içi kayma, öğütülme ve yeniden kristallenme özellikleri ile üstmantoya ait plastik deformasyonun izlerini taşımaktadır. Harzburjitler genel olarak olivin, ortopiroksen,daha az oranlarda klinopiroksen ve kromit minerallerinden oluşmaktadır. Olivinler özşekilsiz, orta tanelikristaller halinde gözlenirken, ortopiroksenler olivinlere oranla daha iri kristaller şeklinde bulunur.Ortopiroksenler, tane sınırları ufalanmış ikincil olivin mineralleri tarafından çevrelenmiştir. Harzburjitlergenel olarak milonitik doku sunmaktadır. Bu birimin en belirleyici özelliği plastik deformasyonun izlerinitaşıyor olmasıdır. Makroskobik olarak ortopiroksen ve kromit gibi minerallerdeki yassılaşma ve uzamayabağlı olarak kayaçta bir foliyasyon düzleminin varlığı ayırt edilebilmektedir. Birimlerde öğütülme veyeniden kristalleşme izlerine rastlanmaktadır. İnce kesitlerde uzama gösteren olivin ve enstatitminerallerinde sıklıkla deformasyon lamellerine (kink-band) rastlanmaktadır. Yapılan jeokimyasalçalışmalarla Mg# değerlerinin 90,80-92,20, ateşte kayıp (LOI) değerlerinin ise 2,5% ile 8,5% arasında birdeğişim göstermektedir. Bu değerler bize harzburjit örneklerinin kısmen serpantinleşme sürecinebaşladığını işaret etmektedir. Peridotitlerin uyumlu elementlerce zenginleşirken, uyumsuzelementlerce tüketildiği görülmektedir. Bu özellik hem abisal hem de okyanus içi yitim zonu peridotitleriiçin tipiktir.

Textural and Geochemical Properties of Tectonites in the Beyşehir- Hoyran Ophiolite: An Example from South of Beyşehir (Konya)

Beyşehir-Hoyran Ophiolite is situated between Kırkkavak and Ecemiş faults in the Taurus Belt. It has the records of Neotethyan Ocean which began to close at the Late Jurassic-Early Cretaceous. Beyşehir- Hoyran Ophiolite in the study area is represents with tectonites (harzburgite, dunite), cumulates (gabbro, pyroxenolite, pegmatoitic gabbro) and metamorphic sole (amphibolite). Textured tectonite peridotites are volumetrically in the most important part of the ophiolite sequence. In general, composed of harzburgite, tectonite textured peridotites also includes dunite and chromite levels. Tectonites showing foliation-lineation, in crystal slip, grind and re-crystallization properties of the upper mantle is a significant traces of plastic deformation. In general harzburgite is composed of olivine, orthopyroxene, clinopyroxene and lesser amounts of chromite. Medium-grained crystals of anhedral olivines was observed in the form of orthopyroxene minerals are larger than olivine minerals. Orthopyroxenes are surrounding by secondary crumbled grain boundaries of olivines. In general harzburgite shows milonitic texture. Beyşehir-Hoyran Ophiolite tectonites of the most important properties is that traces of plastic deformation. Minerals such as orthopyroxene and chromite in macroscopically flattening and elongation depending on the foliation plane of the presence of a rock can be distinguished. Units are found traces of grinding and re-crystallization. Elongated enstatite and olivine minerals are commonly showing deformation lamellae (kink-band) in the thin section. Geochemical studies show that Mg # values are 90,80-92,20 and fire loss (LOI) values are between 2.5 and 8.5%. These values indicate that the harzburgite samples started partly to the serpentinization process. While peridotites are enriched with compatible elements, it is seen that they are consumed as incompatible elements. This feature is typical for both abyssal and intra-oceanic zone peridotites.

___

  • Aldanmaz, E., Yalınız, M.K., Güçtekin, A., Göncüoğlu, M.C., 2008. Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine145, 37–54.
  • Andrew, T., Robertson, A.H.F., 2002. The Beyşehir- Hoyran-Hadim Nappes: Genesis and emplacement of Mesozoic marginal and oceanic units of the northern Neotethys in southern Turkey. Journal of the Geological Society, 159, 529–543.
  • Bağcı, U., Parlak, O., Hock, V., 2006 Geochemical character and tectonic environment of ultramafic to mafic cumulates from the Tekirova (Antalya) ophiolite (southern Turkey). Geological Journal, 41, 193–219.
  • Barth, M.G., Mason, P.R.D., Davies, G.R., Dijkstra, A.H., Drury, M.R., 2003. Geochemistry of the othris ophiolite, Greece: evidence for refertilization? Journal of Petrology 44, 1757–1785.
  • Bizimis, M., Salters, V.J.M., Bonatti, E., 2000. Trace an REE content of clinopyroxenes from suprasubduction zone peridotites. Implications for melting and enrichment processes in island arc. Chemical Geology, 165(1-2), 67-85.
  • Bortolotti, V., Marroni, M., Pandolfi, L., Principi, G., Saccani, E., 2002. Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites. Journal of Geology, 110, 561 – 576.
  • Chen, G., Xia, B., 2008. Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet. Journal of Asian Earth Sciences, 32, 406-422.
  • Collins, A.S., Robertson, A.H.F., 1997. The Lycian Mélange, southwest Turkey: an emplaced accretionary complex. Geology, 25, 255- 258.
  • Collins, A.S., Robertson, A.H.F., 1998. Processes of Late Cretaceous to Late Miocene episodic thrust sheet translation in the Lycian Taurides, SW Turkey. Journal of the Geological Society London,155, 759-772.
  • Coogan, L.A., Thompson, G.M., MacLeod, C.J., Dick, H.J.B.,Edwards, S.J., Hosford Scheirer, A., Barry, T.L., 2004. A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: Evidence for temporal changes in mantle dynamics? Chemical Geology, 207(1–2), 13–30.
  • Çakır, Ü., 2009. Structural and geochronological relationships of metamorphic soles of eastern Mediterrranean ophiolites to surrounding units: indicators of intra-oceanic subduction and emplacement. International Geology Review, 51, 189–215.
  • Çelik, Ö.F., 2007. Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey):Implications for OIB type magma generation following slab break-off. Geological Magazine, 144, 849–866.
  • Çelik, Ö.F., Chiaradia, M., 2008. Geochemical and petrological aspects of dyke intrusions in the Lycian ophiolites (SW Turkey): A case study for the dyke emplacement along the Tauride Belt Ophiolites. International Journal of Earth Sciences, 97, 1151– 1164.
  • Çelik, Ö.F., Delaloye, M., 2003. Origin of metamorphic soles and their post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal, 38, 235–256.
  • Çelik, Ö.F., Delaloye, M.F., 2006. Characteristics of ophiolite-related metamorphic rocks in the Beyşehir ophiolitic melange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. Journal of Asian Earth Sciences, 26, 461–476.
  • Dick, H.J.B., Natland, J.H., 1995. Late stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise, in: Mevel, C. (Ed.), Proc. Ocean Drilling Program, Scientific Results. College Station, Texas (Ocean Drilling Program), 147, 103–134.
  • Dilek, Y., Thy, P., Hacker, B.R., Grundvig, S., 1999. Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neotethyan ocean. Geological Society of America Bulletin, 111, 1192–1216.
  • Dilek, Y., Whitney, D.L., 1997. Counterclockwise P-T-t trajectory from the metamorphic sole of a Neo- Tethyan ophiolite (Turkey). Tectonophysics, 280, 295– 310.
  • Elitok, O., Druppel, K., 2008. Geochemistry and tectonic significance of metamorphic sole rocks beneath the Beyşehir-Hoyran ophiolite (SW-Turkey). Lithos, 100, 322–353.
  • Elitok, Ö., 2001. Geochemistry and Tectonic Significance of the Kızıldağ Ophiolite in Beyşehir-Hoyran Nappes, SW Turkey. 4th. International Symposum, Eastern Mediterranean Geology, 63, Suleyman Demirel University, Isparta, Abstract, 21.
  • Godard, M., Lagabrielle, Y., Alard, O., Harvey, J., 2008. Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle Dynamics beneath a slow spreading ridge. Earth and Planetary Science Letters, 267, 410–425.
  • Jameison, R.A., 1986. P-T Paths from High Temperature Shear Zones beneath Ophiolites. Journal of Metamorphic Geology, 4, 3–22.
  • Kapsiotis, A., 2014. Composition and aletration of Cr- spinels from Milia and Pefki serpentinized mantle peridotites (Pindos Ophiolite complex, Greece). Geologica Carpathica, 65(1), 83-95.
  • Kavak, K.Ş., Parlak, P., Temiz, H., 2017. Geochemical characteristics of ophiolitic rocks from the southern margin of the Sivas basin and their implications for the Inner Tauride Ocean, Central-Eastern Turkey. Geodinamica Acta, 29 (1), 160-180.
  • Koglin, N., Kostopoulos, D., Reischmann, T., 2009. The Lesvos mafic–ultramafic complex, Greece: Ophiolite or incipient rift? Lithos, 108, 243-261.
  • Lyer, K., Jamtveit, B., Mathiesen, J., Malthe-Sørenssen, A., Feder, J., 2008. Reactionassisted hierarchical fracturing during serpentinization. Earth Planet. Sci. Lett. 267, 503–516.
  • Lytwyn, J.N., Casey, J.F. 1995. The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozantı-Karsantı ophiolite, Turkey: Evidence for ridge subduction. Geological Society of American Bulletin, 107, 830-850.
  • McDonough, W.F., Sun, S., 1995. The Composition of the Earth. Chemical Geology, 120, 223-253.
  • Monod, O., 1977. Récherches géologiques dans le Taurus occidentalausud de Beyşehir (Turquie). PhD Thesis, Université de Paris Sud, Orsay, 450.
  • Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45, 2423–2458.
  • Özgül, N., 1984. Stratigraphy and Tectonic Evolution of the Central Taurides. In Tekeli, O., Göncüoğlu, M.C., (Eds), Geology of the Taurus Belt. MTA, Ankara, 77-90.
  • Özgül, N., 1997. Bozkır-Hadım-Taşkent (Orta Torosların Kuzey Kesimi) Dolayında yer alan Tektono- Stratigrafik Birliklerin Stratigrafisi. Maden Tetkik Arama Enstitüsü Dergisi, 119, 113-174.
  • Parkinson, I.J., Pearce, J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a suprasubduction zone setting. Journal of Petrology, 39, 1577–1618.
  • Parlak, O., 2016. The Tauride Ophiolites of Anatolia (Turkey): A Review. Journal of Earth Science, 27 (6), 901–934.
  • Parlak, O., Delaloye, M., 1996. Geochemistry and timing of post-metamorphic dyke emplacement in the Mersin ophiolite (southern Turkey): New age constraints from 40Ar/39Ar geochronology. Terra Nova, 8, 585–592.
  • Parlak, O., Delaloye, M., Bingol, E., 1996. Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geologische Rundschau, 85, 647–661.
  • Parlak, O., Hock, V., Delaloye, M., 2002. The suprasubduction Pozantı-Karsantı ophiolite, southern Turkey: Evidence for high pressure crystal fractionation of ultramafic cumulates. Lithos, 65, 205– 224.
  • Parlak, O., Robertson, A.H.F., 2004. The ophiolite related Mersin Melange, southern Turkey: Its role in the tectonicsedimentary setting of Tethys in the Eastern
  • Sun, S.S., McDonough, W., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42 (1), 313–345.
  • Şengör, A.M.C., Yılmaz, Y., 1981. Tethyan Evolution of Turkey: Plate Tectonic Aproach. Tectonophysics, 75, 181-241.
  • Vergili, Ö., Parlak, O., 2005. Geochemistry and tectonic significance of metamorphic sole rocks and mafic dikes from the Pınarbaşı (Kayseri) ophiolite, Central Anatolia (Turkey). Ofioliti, 30 (1), 37–52.
  • Whitechurch, H., Juteau, T., Montigny, R., 1984. Role of the Eastern Mediterranean Ophiolites (Turkey, Syria, Cyprus) in the History of the Neo-Tethys. In: Dixon, J.E., and Robertson, A.H.F., (eds) the Geological Evolution of the Eastern Mediterranean. Special Publication of Geological Society of London, 17, 111- 126.
  • Williams, H., Smyth, W.R., 1973. Metamorphic Aureoles beneath Ophiolite Suites and Alpine Peridotites; Tectonic Implications with West Newfoundland Examples. American Journal of Science, 273 (7), 594– 621.
  • Workman, R.K., Hart, S.R., 2005, Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231 (1), 53–72.
  • Xu, X.Z., Yang, J.S., Ba, D.Z., et al. 2011a. Petrogenesis of the Kangjinla Peridotite in the Luobusa Ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 42 (4), 553-568.
  • Xu, X.Z., Yang, J.S., Guo, G.L., et al. 2011b. Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbo Suture Zone in Tibet. Acta Petrologica Sinica, 27(11), 3179–3196.
  • Zhou, M.F., Robinson, P.T., Su, B.X., Gao, J.F., Li, J.Q., Yang, J.S., Malpas, J., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone. Gondwana Research, 26, 262- 283.